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a b s t r a c t

General solutions for determining the moment distribution around polygonal holes in infinite isotropic
plate subjected to bending/twisting moment at infinity are obtained using Muskhelishvili's complex
variable method. The conformal mapping and biaxial loading factor is introduced to take care hole
geometry and loading conditions.

The generalized formulation thus obtained is coded and numerical results are obtained for triangular,
square, pentagonal, hexagonal, heptagonal and octagonal cut-outs. The effect of hole geometry and
loading pattern on moment distribution is studied.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The different shaped cut-outs are made in mechanical, civil
and aero-structures to satisfy certain service requirements. These
cut-outs reduce strength of the structures and may lead to failure.
It is essential to study the behavior of plate type of structures with
cut-outs under the application of different types of loading.

The research on the stress distribution around hole is ongoing
since first solution for stress distribution around circular hole is
presented by Kirsch [1] using real variables. Savin [2], Lekhnitskii
[3], Daoust and Hoa [4], Ukadgaonker and Rao [5,6], Ukadgaonker
and Awasare [7], Theocaris and Petrou [8], Ukadgaonker and
Kakhandki [9], Gao [10], Rezaeepazhand and Jafari [11], Batista
[12], Sharma [13,14], Rao et al [15], etc. presented solutions for
plate with different shaped holes, subjected to in-plane tensile
loads (uniaxial/biaxial) at infinity. Using Muskhelishvili's [16]
complex variable method, Savin [2] and Lekhnitskii [3] presented
stress distribution around circular, elliptical, triangular, square and
rectangular holes in isotropic plates. The formulations for stress
field around triangular [4, 5,8, 11, 13], rectangular [15], polygonal
[12,14], irregular shaped [6, 9] holes are available and present
effect of hole geometry, material parameters and loading patterns
on stress field.

The moments around circular and elliptical hole are deter-
mined for remotely applied cylindrical bending, all-round bending
and twisting by Goodier [17] based on the thin plate theory. He
used method of superposition for solution of all-round bending

and twisting moment problem. Using principle of stationary
potential energy, Chen and Archer [18] gave the solution to
determine the stress concentration factor and stress couple con-
centration factor around a circular hole in thick plate. The moment
distribution around circular, elliptical, triangular and square hole
in infinite isotropic plate subjected to bending is obtained by Savin
[2] using complex variable approach. Ukadgaonker and Rao [19]
developed generalized formulation for bending and twisting of
symmetric laminate. Gao's [10] loading condition and Savin's [2]
integro-differential formulation based on Muskhelishvili's [16]
classical work are employed to study bending and twisting of
laminated composites.

Seeing through the literature, it is evident that very few
solutions are available for bending of plates with holes, particu-
larly special shaped holes. As per the best of author's knowledge,
the solution for moment distribution around polygonal hole using
complex variable is not reported in the literature.

In this paper generalized solution for determining moment
distribution around polygonal hole (triangular, square, pentagonal,
hexagonal, heptagonal and octagonal) in an infinite plate, under
cylindrical, all-round and twisting moments is presented using
complex variable method. The effect of hole geometry and loading
pattern on moment distribution is studied.

2. Mapping function

In order to find moment distribution around a hole in z-plane,
the area outside the polygonal hole is mapped to a region outside
unit circle in ζ-plane, which has an origin at ζ¼0 using following
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Schwartz-Christoffel type mapping function:

z¼ ωðζÞ ¼ R ζþ ∑
m
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R is a constant for size of hole, n is a number of sides of polygon.

3. Stress functions

Fig. 1 shows a plate with square hole, subjected to moment
about arbitrary axis x′–y′ rotated by an angle β from x–y-axis. The
moments applied at infinity about arbitrary axis x′–y′ are Mx′¼λM
and My′¼M (λ¼biaxial loading factor [10]).

On the basis of ‘hypothesis of straight normal’, the displace-
ments u and v in x and y directions and the corresponding strains
εx, εy and γxy are expressed as functions of deflection w(x,y) of the
mid-plane in the z-direction as

u¼ �z
∂w
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∂w
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For the thin plates having thickness h (plane stress conditions),
the stress–displacement relation can be written as follows:
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where
E is a modulus of elasticity, ν is Poisson's ratio
Integrating stresses after multiplying by z in the limits of �h/2

to h/2, we get moments Mx, My and Mxy as
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D¼Eh3/12(1�ν2) is the cylindrical rigidity.

By taking the general equation of deflection in terms of
arbitrary analytic function ϕ(z) and ψ(z) as

wðx; yÞ ¼ ReðzϕðzÞþ
Z

ψðzÞdzÞ ð6Þ

The basic equations of plane elasticity in complex variable form
are given by Muskhelishvilli [16] as follows:

MxþMy ¼ �2Dð1þυÞ½ϕ′ðzÞþϕ′ðzÞ� ð7Þ

My�Mxþ2iMxy ¼ 2Dð1�υÞ½zϕ″ðzÞþψ ′ðzÞ� ð8Þ

where

ϕðzÞ; ψðzÞ is a complex potentials of the complex variable
z¼ xþ iy.
ϕ′ðzÞ; ψ ′ðzÞ is a first derivative of the complex potentials.
ϕ″ðzÞ; ψ″ðzÞ is a second derivative of the complex potentials.

In the absence of hole, Eqs. (7) and (8) can be written in terms
applied moments at infinity:
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Solving Eqs. (9) and (10), we get

ϕ′
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By multiplying Eqs. (11) and (12) by ω′ðζÞ and then integrating,
we get

ϕ0ðζÞ ¼ k1ωðζÞ ð13Þ

ψ0ðζÞ ¼ k2e�2iβωðζÞ ð14Þ

where
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The boundary conditions imposed by this stress functions on
hole surface can be written as

f ¼Nϕ0ðzÞþzϕ′
oðzÞþψ0ðzÞ ð15Þ

By introducing stress functions in above equation the boundary
conditions can be represented as
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(ζ¼t at hole surface).
The stress functions ϕ1ðζÞ and ψ1ðζÞ can be obtained by

evaluating Cauchy's integral:

ϕ1ðζÞ ¼ � 1
2πi

∮
f ðtÞdt
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ð17Þ
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′
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Fig. 1. Loading on the plate with square hole.
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