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a b s t r a c t

Fibre reinforced elastomers behave anisotropically as well as viscoelastically. Yang and Sun (1982)
developed an elastic contact model for anisotropic materials which, in the present work, is extended to
account for viscoelastic effects. The developed viscoelastic contact model uses the creep compliance
function of the material in the direction of indentation. The results of the model agree with experimental
results obtained on short fibre reinforced EPDM. Furthermore, a parameter study of the coefficients of
the creep compliance function on the real contact area has been made. The results show that, at short
time scales, the viscoelastic real area of contact can be significantly smaller than when assuming fully
elastic behaviour. At long time scales the results of the viscoelastic contact model equal those of the
elastic model of Yang and Sun.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Fibre reinforced elastomers are used in a range of industrial
applications such as tyres, transmission belts and seals. Similar to
fibre reinforced polymers, the addition of fibres to an elastomeric
matrix causes improved mechanical performance, albeit typical
reinforcements for elastomers, especially those with short fibres,
are rather low [1,2]. With the increasing use of short fibre
reinforced elastomers, it has become important to characterize
their contact behaviour as this influences their tribological perfor-
mance. Fibre reinforced elastomers behave viscoelastically due to
the elastomeric matrix and anisotropically as the result of the
preferred orientation of the fibres. To determine the contact
between a rigid spherical indenter and an anisotropic viscoelastic
material we require a contact model that considers both effects.

Models describing the contact behaviour of viscoelastic materi-
als are usually limited to isotropic material behaviour. In the
present study, a viscoelastic anisotropic material with a low degree
of anisotropy is considered. This means that the time dependent
material properties, such as creep compliance in tensile and shear,
have similar, but not necessarily equal values in each principal
direction.

The effect of anisotropy in the elastic contact problem was studied
theoretically by Willis [3], who considered a three dimensional elastic

contact of full anisotropic bodies. Swanson [4] used the Willis [3]
approach to calculate the Hertzian contact problem for elastic ortho-
tropic materials. Therefore, if provided with nine different material
properties (such as the elastic moduli, shear moduli and Poisson's
ratios, in three directions) it is possible to calculate the area of contact
for orthotropic materials. However, for fibre reinforced elastomers in
the rubbery state, it is difficult to accurately obtain the material
properties in that many directions and a model that describes the
contact behaviour whilst requiring a smaller number of parameters is
highly desirable.

Yang and Sun [6] and Tan and Sun [7] performed indentation
tests in laminated composites, showing that the loading curve for
these anisotropic materials follows a power law with the same
index as would be expected from the Hertz theory. Consequently,
for an anisotropic elastic material that is indented by a rigid sphere
they proposed to approximate the deformation by using the elastic
modulus of the anisotropic material in the direction of inden-
tation only.

Chen [8] showed that for isotropic and anisotropic materials
under pure normal loading, the normal displacements and the
pressure distributions are identical; only the absolute values of the
pressure may differ. Furthermore, according to Chen [8], the stress
distribution inside an elastically deforming orthotropic body is
symmetrical when one of the principal axes of the orthotropic
material coincides with the direction of indentation.

This means that the approximation of Yang and Sun [6] and Tan
and Sun [7] to model the anisotropic behaviour as a modification
of the isotropic behaviour appears to be valid.
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The above is valid for purely elastic materials. Viscoelastic
materials show time dependent behaviour which affects the contact
problem, as the boundary conditions change to become time depen-
dent functions. This type of problem is more complex to solve than a
time independent problem because methods such as the Laplace
transform and the elastic–viscoelastic correspondence principle cannot
be directly applied. A solution to the viscoelastic isotropic contact
problem was found by Lee and Radok [9], who obtained the pressure
distribution over the contact area for a non-decreasing contact area
function. Graham [10] obtained viscoelastic analogues to the Hertz
equations for a contact area function with a single maximum and,
later, for a time dependent contact area with any number of maxima
or minima [11]. Ting [12,13] expressed the viscoelastic solutions in
terms of the solution to the elastic contact problem, thus solving the
contact stresses between a viscoelastic solid and a rigid indenter for a
contact area that follows an arbitrary time function.

The viscoelastic contact models discussed in [9–13] are for
homogeneous and isotropic materials. In the present study, the
method of Yang and Sun [6] and Tan and Sun [7] that approximates
orthotropic behaviour by using the material properties in only one
direction is extended to consider viscoelasticity. This is done by
replacing the isotropic viscoelastic time function by the anisotropic
viscoelastic time function in the direction of indentation.

2. Sun's anisotropic contact model

As discussed before, Yang and Sun [6] and Tan and Sun [7]
proposed an approximation for the deformation of an anisotropic
elastic material that is indented by a rigid sphere. Following this
approximation, the contact area is a circle of radius given by

a¼ 3RFN
4E′z

� �1=3

ð1Þ

where E′z is the reduced elastic modulus in the direction of
indentation, z. A comparison of the contact areas calculated
employing this unidirectional model with Willis's anisotropic con-
tact model [3] has been made by Swanson [4]. He found that the
anisotropic contact model only gives a 4% larger contact area than
the unidirectional model, for a material that is twice as stiff in the
plane of indentation (i.e. perpendicular to the indentation direc-
tion). Therefore the approximation of Yang and Sun [6] and Tan and
Sun [7] can be considered valid for materials with a low degree of
anisotropy. At high degrees of anisotropy, say when the difference
in properties is more than 400%, the approximation proposed by
Yang and Sun [6] and Tan and Sun [7] is not valid [4,5].

3. Extension to viscoelastic contact, based on Sun's model

A common approach in linear viscoelastic theory, see e.g. Lee and
Radok [9] and Ting [12], is to express the viscoelastic solution of the
isotropic contact problem in terms of the elastic solution. Following
this thought, the stress distribution inside an orthotropic viscoelastic
material can be described based on the orthotropic elastic solution.
This means that, for an anisotropic viscoelastic material with a low
ratio of reinforcement (i.e. Ez/Exo2), the time dependent contact
area can be calculated by combining the solution of the viscoelastic
contact problem with the elastic model described in [6,7]. This
means that the contact behaviour of the viscoelastic anisotropic
material is characterised by time dependent material properties
measured in the direction of indentation, such as a stress relaxation
function ψz(t) or a creep compliance function ϕz(t).

For the loading phase of the contact, i.e. for an increasing
contact area, the pressure distribution in the contact area, p(r,t) is
given by

pðr; tÞ ¼ 4
πR

Z t

0
ψ zðt−τÞ

d
dt

a2ðτÞ−r2� �1=2
dτ ð2Þ

where R is the radius of the spherical indenter, a is the radius of
the contact area, r and t are the spatial and temporal variables,
respectively and τ is the dummy variable from the convolution
integral.

The total applied time dependent normal force, FN(t), is
calculated by integrating the pressure distribution over the contact
area. This results in

FNðtÞ ¼
8
3R

Z ∞

0
ψ zðt−τÞ

∂
∂τ

ða3ðτÞÞdτ ð3Þ

The creep compliance ϕz(t) and stress relaxation ψz(t) functions
are related in the Laplace domain according to

ψ zðsÞϕzðsÞ ¼
1
s2

ð4Þ

Assuming that the force is defined by a Heaviside function as
FN (t)¼H(t) � FN, Eq. (3) can be inverted, giving the radius of the
contact area:

a3ðtÞ ¼ 3
8
R⋅FN ⋅

Z t

0
ϕzðt−τÞ

d
dτ

HðτÞdτ ð5Þ

Solving the integral allows to express the radius of the
viscoelastic contact area as

aðtÞ ¼ 3R⋅FN
8

ϕzðtÞ
� �1=3

ð6Þ

Nomenclature

a radius of the contact area, for elastic materials [mm]
a(t) radius of the contact area, for viscoelastic materials [mm]
E′ equivalent elastic modulus [MPa]
Ez elastic modulus in the direction of indentation [MPa]
Ex elastic modulus perpendicular to the indentation

direction [MPa]
FN applied normal force [N]
FN(t) time dependent applied normal force [N]
H(t) heaviside function [–]
p(r,t) pressure distribution at a viscoelastic contact [MPa]
r spatial variable in the contact pressure [mm]

R radius of the spherical indenter [mm]
S* time it takes to reach a stable state in viscoelastic

contact [s]
t time, temporal variable in the contact pressure [s]
ψz(t) stress relaxation function, measured in the indenta-

tion direction [MPa−1]
ϕz(t) creep compliance function, measured in the indenta-

tion direction [MPa−1]
ϕ (t) creep compliance function of the material model

[MPa−1]
ϕr relaxed creep compliance [MPa−1]
λi retardation time of the ith component [m s]
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