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a b s t r a c t

This paper presents a numerical upper bound limit analysis using radial point interpolation method

(RPIM) and a direct iterative method with nonlinear programming. By expressing the internal plastic

dissipation power with a kinematically admissible velocity field obtained through RPIM interpolation,

the upper bound problem is formulated mathematically as a nonlinear programming subjected to

single equality constraint which is solved by a direct iterative method. To evaluate the integration of

internal power dissipation rate without any background integral cell, a new meshless integration

technique based on Cartesian Transformation Method (CTM) is employed to transform the domain

integration first as boundary integration and then one-dimensional integration. The effectiveness and

accuracy of the proposed approach are demonstrated by two classical limit analysis problems. Further

discussion is devoted to optimal selection of relevant parameters for the computation.

& 2013 Published by Elsevier Ltd.

1. Introduction

As a proved direct and efficient approach to estimate the
ultimate bearing capacity for structures, limit analysis has long
been used in the design of a wide range of applications in civil and
geotechnical engineering, such as shells, plates, foundations, retain-
ing walls and slopes. Relying frequently on hand calculation in early
days, limit analysis has now been dominated by numerical solutions
with the aid of modern computers. Almost all engineering struc-
tures, no matter how complex their shapes and/or loading condi-
tions might be, can now be conveniently discretized by numerical
methods, such as Finite Element Method (FEM). Both the lower
bound and the upper bound theorem can be reformulated as
numerical optimization problems, and be applied to the discretized
physical domain in sought for limit loads.

Finite elements and linear programming have commonly been
used for numerical limit analysis for long (see, e.g.,
[51,1,20,6,17,63,64,71,62]). With the recent progress in the theory
of nonlinear programming (hereafter shortened as NLP), a wide
variety of advanced numerical techniques have been developed in
limit analysis and more rigorous solutions can be sought. Typical
examples include the constrained nonlinear optimization formula-
tion based on mixed finite elements developed by Zouain et al. [75]
for cohesive materials, and its recent generalization to frictional-

cohesive materials by [49,50]. Recently, more advanced nonlinear
programming techniques such as those based on the primal-dual
interior point method [32,58–61] and those based on the second-
order cone programming (SOCP) [52–55,56,34,19,37,38] have also
been successfully applied to the limit analysis involving different
materials.

Upper bound limit analysis has traditionally been based on
finite element method for both purely cohesive materials and
cohesive-frictional materials. The plastic incompressible condi-
tion in the analysis can be typically treated by such techniques as
discontinuous velocity field [62,49,50], penalty function method
[47,43], mixed formulations [18,2,9] and variational principle
[68]. High-order elements [71,53] and cell-based smoothing finite
element method [45,37] have also been developed to overcome
the issue of volumetric locking when the penalty function method
is used. In treating non-differential plastic dissipation function in
numerical upper bound limit analysis, a wide range approaches
including viscous plastic regularization [30,10], smoothed method
([2,3,23,69,29], etc.) and direct iterative method based on distin-
guished rigid and plastic regions [72,73,47,8,40–43] have been
employed.

More recently, meshless methods have received much atten-
tion in applications relevant to numerical limit analysis. For
example, Chen et al. [13] and Le et al. [36] have developed a
lower bound approach using element-free Galerkin (EFG)
approach with moving least squares (MLS) method to construct
the self-equilibrium stress basis vectors and the static admissible
stress field. Le et al. [35] have also developed an upper bound
limit analysis approach based on EFG method, in which the MLS
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approximation is employed to construct the kinematically admis-
sible velocity field. The upper bound limit analysis is then formu-
lated as a SOCP problem and solved by a primal-dual interior point
method originally proposed by Andersen et al. [3]. Moreover, as an
extension of limit analysis, shakedown analysis of structures and
solids with repeated loads can also be performed based on EFG [14]
and meshless local Petrov-Galerkin (MLPG) method [15]. Without
requiring the discretization of physical domain into meshes, mesh-
less methods have been proved to offer improved computational
efficiency over FEM with reasonable accuracy.

There are two key issues deciding whether or not an element-
free Galerkin method can be successfully applied to this upper
bound limit analysis. The first is pertinent to how the essential
boundary conditions can be effectively reinforced, and the second is
related to accurate numerical integration of the plastic dissipation
power. First, it is well-known that in EFG method the shape function
Fi(xj) lacks the property of Kronecker delta function, i.e. Fi(xj)adij,
where dij is the Kronecker delta function. It is hence difficult to
ensure that the approximation of nodal displacement uh(xi) is
exactly equal to the fictious nodal values ûi at node xi, i.e.,
uh(xi)¼

P
Fi(xj)ûiaûi. Consequently, the displacement boundary

conditions cannot be directly enforced, i.e., ûba %u, where ûb is the
fictious nodal value at boundary node xb and %u is the prescribed
displacement. We notice that Le et al. [35] have adopted a colloca-
tion method proposed by Zhu and Atluri [74] to treat the boundary
conditions. This method, however, may lead to increasing con-
straints for the NLP problem. Second, numerical integration of
dissipation function has traditionally been performed by using
either nodal integration method (see, e.g. [4]), or the Gauss quad-
rature based on an integral background cell (see, [16]). Chen et al.
[12,11] have also developed a stabilized conforming nodal integra-
tion (SCNI) which proves to be robust but needs a voronoi cell.
Various issues regarding accuracy and efficiency still need to be
tackled with the various methods.

This paper presents a study using EFG method for limit
analysis, in an attempt to improve its performance in the above
two aspects. A novel numerical procedure will be proposed for
upper bound limit analysis. We shall employ a radial point
interpolation method (RPIM) originally proposed by Wang and
Liu [67] to construct the kinematically admissible velocity field.
With the built-in property of Kronecker delta function in the
shape function of RPIM, it is expected to resolve the first issue
concerning the enforcement of boundary conditions. Meanwhile,
we shall employ a novel meshless integration technique based on
the Cartesian Transformation Method (CTM) developed by Khos-
ravifard and Hematiyan [31]. By using this technique, a domain
integration can be sequentially first transformed into a boundary
integration and then a one-dimensional (1D) integration, such
that no integral background cells are required. A direct iterative
method will be used to solve the NLP upper bound problem.

2. Numerical formulation of upper bound approach based on
RPIM

2.1. Mathematical description of the upper bound theorem

Under the assumption of small deformation, consider a rigid-
perfectly plastic solid V with a boundary S subjected to body forces g
and tractions t at part of the surface, Ss. The remaining part of the
surface is supposed to be Su, and Ss[Su¼S, Ss\Su¼|. The upper
bound theorem states that the solid will collapse if there exists a
kinematically admissible velocity field _uAU, such that the rate of
external forces work equals to the rate of internal power dissipation.
Mathematically, the collapse load multiplier l can be determined by

the following optimization problem:

l¼min
uAU

Z
V

Dð _eÞdV

s:t: Wextð _uÞ ¼

Z
V

gT _udVþ

Z
Ss

tT _u dS¼ 1 ð1Þ

where _e ¼r _u is the plastic admissible strain rate with r being the
linear differential operator. U is a set of kinematically admissible
velocity field defined below:

U ¼ f _u ¼ _u0 on Su, Wextð _uÞ40g ð2Þ

In addition, associated flow rule is assumed such that the
plastic admissible strain rates can be expressed as follows:

_e ¼ _m @f

@r
ð3Þ

where _m denotes a non-negative plastic multiplier. In Eq. (1), Dð _eÞ
denotes the plastic dissipation function which may be defined as
follows:

Dð _eÞ ¼max
rAK
fr: _eg � re: _e ð4Þ

where r is the admissible stresses constrained by the convex
yield surface, and re is the stresses on the yield surface associated
with any strain rates e through the associated flow rule. K denotes
a set of plastic admissible stresses which can be expressed as
follows [53]:

K ¼ fr: f frgr0g ð5Þ

Evidently, the mathematical optimization problem in (1) is
solvable only if a yield function is appropriately specified. The
dissipation function in Eq. (4) can be reformulated as follows [7]:

D¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
_eTH _e

p
ð6Þ

For a plane strain problem, the stress matrix H can be expressed as

H¼
s2

s �s2
s 0

�s2
s s2

s 0

0 0 0

2
64

3
75 ð7Þ

whilst for plane stress problem, it can be expressed as

H¼
1

3

4s2
s �2s2

s 0

�2s2
s 4s2

s 0

0 0 s2
s

2
64

3
75 ð8Þ

In both Eqs. (7) and (8) ss is the yield stress. Consequently, limit
analysis by the upper bound theorem can be recast into the
following generalized nonlinear optimization problem:

l¼min
uAU

Z
V
½

ffiffiffiffiffiffiffiffiffiffiffiffiffi
_eTH _e

p
�dV

s:t:

Z
V

fT _udVþ

Z
Ss

gT _udS¼ 1 ð9Þ

For a practical problem with finite domain, the above math-
ematical optimization problem may be solved by discretization
techniques with such numerical methods as finite element
method or mesh-free method. In the following subsection, a
NLP scheme in conjunction with mesh-free method will be
developed for this purpose.

2.2. Nonlinear programming based on radial point interpolation

method

2.2.1. Radial point interpolation method

A radial point interpolation method (RPIM) originally proposed
by Wang and Liu [67] will be employed to construct a displace-
ment field for the mesh-free method. RPIM is based on local
supporting nodes and includes polynomial reproduction in the
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