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a b s t r a c t

The Generalized Differential Quadrature (GDQ) Method is applied to study laminated composite shells

and panels of revolution. The mechanical model is based on the so called First-order Shear Deformation

Theory (FSDT) deduced from the three-dimensional theory, in order to analyze the above moderately

thick structural elements. In order to include the effect of the initial curvature from the beginning of the

theory formulation a generalization of the kinematical model is adopted for the Reissner–Mindlin

theory. The solution is given in terms of generalized displacement components of points lying on the

middle surface of the shell. The results are obtained taking the two co-ordinates into account, without

using the Fourier expansion methodology, as done in semi-analytical methods. After the solution of the

fundamental system of equations in terms of displacements and rotations, the generalized strains and

stress resultants can be evaluated by applying the Differential Quadrature rule to the generalized

displacements themselves. The transverse shear and normal stress profiles through the laminate

thickness are reconstructed a posteriori by simply using local three-dimensional equilibrium equations.

No preliminary recovery or regularization procedure on the extensional and flexural strain fields is

needed when the Differential Quadrature technique is used. By using GDQ procedure through the

thickness, the reconstruction procedure needs only to be corrected to properly account for the

boundary equilibrium conditions. In order to verify the accuracy of the present method, GDQ results

are compared with the ones obtained with 3D finite element methods. Stresses of several composite

shell panels are evaluated. Very good agreement is observed without using mixed formulations and

higher order kinematical models. Various examples of stress profiles for different shell elements are

presented to illustrate the validity and the accuracy of GDQ method.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Shells have been widespread in many fields of engineering as
they give rise to optimum conditions for dynamic behavior,
strength and stability. The deflection and interlaminar state of
stress on these structures caused by different forces can have
serious consequences for their strength and safety. Therefore, an
accurate deflection and interlaminar state of stress determination
are of considerable importance for the technical design of these
structural elements. The aim of this paper is to study the static
behavior of shell structures, which are very common structural
elements.

During the last 60 years, two-dimensional linear theories of
thin shells and plates have been developed including important

contributions by Timoshenko and Woinowsky-Krieger [1], Flügge
[2], Gol’Denveizer [3], Novozhilov [4], Vlasov [5], Ambartusumyan
[6], Kraus [7], Leissa [8,9], Markuš [10], Ventsel and Krauthammer
[11] and Soedel [12]. All these contributions are based on the
Kirchhoff–Love assumptions. This theory, named Classical Shell
Theory (CST), assumes that normals to the shell middle-surface
remain straight and normal to it during deformations and
unstretched in length.

When the theories of thin shells are applied to thick shells, the
errors could be quite large. With the increasing use of thick shells
in various engineering applications, simple and accurate theories
for thick shells have been developed. With respect to thin shells,
thick shell theories take the transverse shear deformation and
rotary inertia into account. The transverse shear deformation has
been incorporated into shell theories by following the theory of
Reissner–Mindlin [13], also named First-order Shear Deformation
Theory (FSDT). Abandoning the assumption on the preservation of
the normals to the shell middle surface after the deformation, a
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comprehensive analysis for elastic isotropic shells and plates was
made by Kraus [7] and Gould [14,15]. The present work is just
based on the FSDT. In order to include the effect of the initial
curvature in the evaluation of the stress resultants a general-
ization of the Classical Reissner–Mindlin Theory (CRMT) has been
proposed in literature by Kraus [7], Qatu [16–18] and Toorani and
Lakis [19]. There are three different ways to evaluate the engi-
neering elastic constants. The first is the Classical Reissner–
Mindlin approach [7] that consists in neglecting the effect of
curvatures. Using this approach the engineering elastic stiffnesses
are constant and do not depend on curvatures. The second,
proposed by Kraus [7] and Toorani and Lakis [19], is based on
the Taylor expansion, while the third proposed by Qatu [16–18]
consists in the exact integration of the elastic constants. As a
consequence of the use of these considerations the stress resul-
tants directly depend on the geometry of the structure in terms of
the curvature coefficients and the hypothesis of the symmetry of
the in-plane shearing force resultants and the torsional couples
declines. A further improvement of the previous theories of shells
has been proposed by Toorani and Lakis [20]. In this work the
kinematical model is generalized in order to include the effect of
the curvature from the beginning of the shell formulation. By so
doing the strains relationships have changed and, as consequence,
the equilibrium equations in terms of displacements have to be
modified. It is worth noting that no results are available in the

literature about this theory for doubly-curved shells. In fact, some
authors proposed good theories [16–19], but no considerations
about doubly-curved shells of revolution have been done. Thus,
the motivation of the present work is based on the lack of results
about completely doubly-curved shells and panels of revolution.
Furthermore, due to the significant developments that have
taken place in composite materials [21], the increase in the their
use in a lot of types of engineering structures in the last decades
calls for improved analysis and design tools for these types of
structures. Thus, in this paper, the laminated composite shells are
considered.

As for the static analysis of shells, several studies have been
presented earlier. With regard to semi-analytical methods, each
static and kinematic variable is transformed into a theoretical
infinite Fourier series of harmonic components [21–25]. However,
applicability of the semi-analytical solutions are limited in terms
of the boundary conditions, stacking sequences and the form of
the panel. The finite element method do not present these
drawbacks and it represents the most popular numerical tool in
carrying out the above analyses [14,15,21,26–29]. Furthermore,
meshless methods are also available to solve analogous problems
such as reported in literature [30–34].

For a curved panel of general form it is not possible to perform
a semi-analytical solution and the two-dimensional field must
be dealt with directly, as will just be done in this paper. The

Nomenclature

O0jsz local shell co-ordinate system
Ox1x2x3 global co-ordinate system
x03 geometric axis of the meridian curve
l number of laminae
h thickness of the shell
hk thickness of the kth lamina
zk bottom co-ordinate of the kth lamina
zkþ1 top co-ordinate of the kth lamina
W circumferential angle
Rb shift of the geometric axis of the curved meridian x03
R0 circumferential radius
Rj radius of curvature along the meridian j co-ordinate
Rs radius of curvature along the circumferential s co-

ordinate
Uj,Us,Uz 3D shell displacement components
uj, us, uz displacement components of points lying on the

middle surface (z¼0) of the shell
bj,bs normal-to-mid-surface rotations
e0
j,e0

s ,g0
j,g0

s in-plane meridian, circumferential and shearing
components

w0
j,w0

s ,o0
j,o0

s meridian, circumferential and torsional curva-

ture changes
g0
jn,g0

sn transverse shearing strains
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66 tra-
nsformed material stiffnesses

A
ðtÞ
pq , ~A

ðtÞ
pq ,AðtÞpq elastic engineering stiffnesses

k shear correction factor
Nj,Ns,Njs,Nsj in-plane meridian, circumferential and shearing

force resultants
Mj,Ms,Mjs,Msj meridian, circumferential and torsional couple

resultants
Tj,Ts transverse shear force resultants

Lpq equilibrium operators
qj,qs,qn,mj,ms generalized external actions
qþj ,qþs ,qþn external forces in the three principal directions

j,s,z at the top surface of the shell
q�j,q�s ,q�n external forces in the three principal directions j,s,z

at the bottom surface of the shell
N number of sampling points in j direction
M number of sampling points in s direction
T number of sampling points in z direction
Bjð1Þik GDQ weighting coefficients of the first order deriva-

tive in j direction
Bsð1Þ

jk GDQ weighting coefficients of the first order deriva-
tive in s direction

Bzð1Þmk GDQ weighting coefficients of the first order deriva-
tive in z direction

i generic discrete sampling point in j direction
j generic discrete sampling point in s direction
m generic discrete sampling point in z direction
sx,sy, txy,txn, tyn,sn stress components
sj,ss, tjs,tjn,tsn,sn stress components
ej, es,en, gjs,gjn, gsn strain components
q0 uniformly distributed load
E Young modulus for the isotropic material
n Poisson coefficient for the isotropic material
(x,y) co-ordinate system of the rectangular plate
(x,s) co-ordinate system of the annular plate
Ri inner radius of the annular plate
Re outer radius of the annular plate
db vector of the boundary degrees of freedom
dd vector of the domain degrees of freedom
fb external action vector of the boundary degrees of

freedom
fd external action vector of the domain degrees of

freedom
Kbb,Kbd,Kdb,Kdd stiffness matrices of the boundary-domain

partitioning
tj,ts,n tangential and normal vectors related to the reference

surface
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