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Abstract

The effect of surface tension on cavity nucleation and growth in an incompressible Neo-Hookean material under dead-loading has

been studied previously (Dollhofer et al., Int J Sol Struct, 2004; 41: 6111–27). The above work is extended to include machine

compliance and material hardening effects on cavity growth in soft adhesives in this paper. The equilibrium cavity stretch is found

both by solving the field equations and by the energy approach. It is shown that the equilibrium cavity stretch is determined by three

dimensionless parameters for the dead-loading case and four parameters for the finite compliance case for the Neo-Hookean

material. For the Mooney–Rivlin material, one additional dimensionless parameter is needed.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Soft materials such as gels and lightly cross-linked
elastomers have many applications in areas of technol-
ogy such as pressure sensitive adhesives (PSA) and
biological engineering. Since these materials are nearly
incompressible, i.e. their shear moduli are orders of
magnitude lower than their compressive moduli, failure
often is initiated by the nucleation and growth of
cavities, especially if the geometry is highly confined.
Indeed, as a result of geometric confinement, the stress
state is highly triaxial, favoring cavity nucleation and
growth [1]. For example, in a probe tack test [2–5], a
very thin layer of soft adhesive is bonded to a glass
substrate. A steel punch, of radius much greater than the
adhesive thickness, is brought into intimate contact with
the adhesive. As the punch is removed, cavities are often

observed to nucleate at the interface between the punch
and the adhesive. If the interfacial adhesion is strong,
these cavities grow into the adhesive layer, eventually
evolving into a highly fibrillated structure formed on the
cavity walls [2,3,6]. Similar tests have been employed to
study the adhesion of barnacles to stiff substrates.

Probe tests were used first by Hammond [7] to
measure the tack of adhesives, defined as the maximum
tensile force during separation; then in the 1980s Zosel
[8] argued that the integral under the stress–strain curve
needed to be used to characterize tack. However it is
only recently that the peak stress in the force-separation
curve was attributed to the formation of cavities by
Lakrout et al. [2]. Since this first result, Chiche et al. [9]
and Roos [10] have shown that the peak stress cannot be
easily related to the linear elastic modulus, G, of the soft
adhesive as predicted by a simple cavitation model such
as that first proposed by Gent [11]. In some cases, the
peak stress depends on the layer thickness and in all
cases it depends on the non-linear elastic properties of
the material. These results suggest that boundary
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conditions are important in the growth of cavities in soft
adhesives, and that other constitutive equations than
simple Neo-Hookean should be considered. In this
paper we try to address some of these questions by
exploring models of single cavity growth.

There is a large volume of theoretical work on the
deformation of spherical cavities in elastic solids. An
excellent review of these works can be found in Horgan
and Polignone [12]. The focus of these studies was to
determine the equilibrium elastostatic fields and to study
the dependence of the number of equilibrium solutions
on the constitutive model. These past studies focused on
traditional non-linear elastic solids such as vulcanized
rubber, which is highly cross-linked and in which
deformations due to surface tension can be neglected.
Deformations due to surface tension cannot be ne-
glected for elastic gels and pressure sensitive adhesives.
Since these materials are only lightly cross-linked, their
elastic moduli can be orders of magnitude lower than
those of vulcanized rubbers, so that surface tension can
play a significant role in their deformation. Also, highly
crosslinked rubbers fail by crack propagation and
models of cavity growth ahead of a crack-like cavity
by breaking bonds have been studied by Williams and
Schapery [13], Gent and Wang [14] and more recently by
Lin and Hui [15]. Cavity growth by crack propagation is
much less likely in soft materials like PSA, as the stress
required to break bonds is much higher than the elastic
modulus, even if hardening effects are taken into
consideration.

Another important consideration in the modeling of
cavity growth is the boundary condition. Most analyses
assume that the cavitated body is loaded by an
uniformly applied constant true traction field at infinity
that is independent of the deformation of the cavity
surface; see Green and Zerna [16], Gent and Tompkins
[17], Ball [18]. This boundary condition is, for obvious
reasons, difficult to achieve experimentally. In reality,
both the finite size of a specimen and the loading
machine compliances can play an important role in the
deformation of a cavity. This work is a very slight step
in this direction.

Gent and Tompkins [17] were the first to consider the
effect of surface tension on cavity growth due to a
remote applied pressure. For a spherical cavity in an
infinite Neo-Hookean solid subjected to a remotely
applied constant hydrostatic traction, the solution is
found to be unique. However, this is not the case if one
considers dead loading, where the traction changes with
deformation in such a way so that the total applied force
is independent of deformation. For this case, Dollhofer
et al. [19] has recently shown that multiple solutions can
exist. This was then used to explain the different growth
rate of optically visible and invisible precursors and
good agreement was obtained with probe tack experi-
ments on soft adhesives.

The following questions naturally arise: is the
existence of multiple solutions an artifact of the dead
loading condition? In other words, can multiple solu-
tions exist in loading configurations that take into
account the effect of loading machine compliance? Also,
how do the solutions depend on the constitutive model?
In this paper, we extend the work of Dollhofer et al. [19]
to address these issues. The approach here is also
slightly different from the above-mentioned work, in
which the equilibrium solutions were obtained from the
potential energy landscape. In this work, exact solutions
are obtained by solving the field equations. The physical
significance of these solutions is discussed by examining
the potential energy landscape.

The plan of this paper is as follows: in section two, we
formulate the governing field equations used to obtain
the equilibrium solution and then describe the equiva-
lent energy approach. We then discuss the special cases
of dead-loading and displacement-controlled tests in
section three. Numerical results are given in section four
for the Neo-Hookean model. The effect of material
hardening is studied in section five by considering the
Mooney–Rivlin material model, which is representative
of the non-linear elastic properties of PSA; see Roos and
Creton [20]. Comparison with previous experimental
results, summary of the main results of this paper along
with a discussion of future extensions of the present
work is finally given in Section 6.
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Nomenclature

l stretch
W stored energy function
o restriction of W to a particular class of

deformations
t Cauchy stress tensor
E infinitesimal Young’s modulus
c01, c10 material constants in the Mooney–Rivlin

model
g surface energy per unit area
d applied displacement on rigid loading device

k stiffness of springs
R, r particle’s distance from the origin in the

reference and current configuration
A, B cavity and exterior radii in the reference

configuration
a, b cavity and exterior radii in the current

configuration
P�;T� normalized nominal and true traction
a parameter characterizing the role of surface

tension, a ¼ g=EA

b parameter characterizing the role of machine
compliance, b ¼ AE=k
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