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a b s t r a c t

Based on the kinematic assumptions of Timoshenko’s beam theory, this paper formulates the principle

of virtual work and reciprocal theorem of work for the partial-interaction composite beams. Then the

principle of minimum potential energy and minimum complementary energy are derived and proved.

The variational principles for the frequency of free vibration and critical load of buckling are also

deduced afterward as well as the mixed variational principle with two types of variables. These

variational formulae are all rendered in terms of shearing force, bending moment and axial force as well

as corresponding deflection, rotation angle and interlayer slip, which can be applied conveniently for

analyzing of composite beams. According to the proposed variational principles, the governing

equations of static bending, free vibration and buckling can be obtained for the partial-interaction

composite members as well as the corresponding boundary conditions. Finally, some numerical

examples are presented and compared with the other solutions available in literatures to demonstrate

the present theory.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Due to their appropriate usage of high tensile strength of steel
and high compressive strength of concrete, composite steel-
concrete beams have widespread applications in engineering
structures. Because of the finite rigidity of those connectors,
which combined the steel and concrete parts to work together,
longitudinal slips will occur at the interface between the two
materials even under small load. This phenomenon is well known
as partial-interaction [1].

The theory foundation of the partial-interaction composite
beams is commonly attributed to Newmark et al. [1] who
developed the linear relations between the interlayer shear force
and slip and derived the governing equations of partial-inter-
action composite beams based on the classical beam theory.
Goodman and Popkov [2] extended the linear relations to non-
linear one for layered wood systems. Itani and Brito [3] presented
the closed-form solutions of the second-order differential equa-
tion involving the axial force and interlayer slip derived by
Newmark et al. [1]. Murakami [4] proposed the theory of
partial-interaction composite members including the influence
of shear deformation and derived the solution of a simply
supported beam with a concentrated force at the mid-span. On

the basis of classical beam theory, Girhammar and Gopu [5]
presented the differential equation and its analytical solutions
of partial-interaction composite members stressed by axial force
and applied them to some boundary conditions. Recently, Wu
et al. [6] analyzed the free vibrations of partial-interaction
composite members with axial force. Consequently, they not only
exhibited the exact formula of the free vibration of a simply
supported beam, but also suggested approximate formulae of
composite beams with other boundary conditions conveniently
assumed in practical applications. Later on, Timoshenko’s beam
theory was used for detail investigation of the static, dynamic and
buckling behavior of partial-interaction composite beams and
some analytic solutions for different boundary conditions were
obtained by Xu and Wu [7]. Schnabl et al. [8] also gave the
analytical solutions of two-layer beam taking into account shear
deformation, in which different shear deformations were allowed
in two layers. Chen et al. [9] established a state space formulation
for analyzing static response of partial-interaction composite
members to deal with non-uniformly distributing shear connec-
tors and continuous composite beams, and also explored the
possibility of transverse separation at the interface. All the works
above are based on the beam theories, Rao and Ghosh [10],
together with Fazio and Hussein [11], however, analyzed the
mechanical behaviors of partial-interaction composite members
based on the theory of elasticity. Xu and Wu [12,13] also
investigated partial-interaction composite beams using the
assumptions of the plane stress. Regarding forced vibrations,
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Girhammar and Pan [14] studied the dynamic behavior of partial-
interaction composite members presented the orthogonal relations
of the mode shapes of vibration. Adam et al. [15] separated the
dynamic responses into quasi-static and complementary dynamic
responses for simplification of analysis. Grihammar et al. [16]
reinvestigated the vibration equation and corresponding generalized
boundary condition of partial-interaction composite members
which considered the end with elastic support or lumped mass.
More recently, Shen et al. [17] developed the orthogonality of mode
shapes and analyzed the behaviors of forced vibrations of partial-
interaction composite members by using symplectic inner product.

Numerical methods, especially finite element method
(FEM), were also used widely in composite beams. For examples,
Thompson et al. [18] developed a finite element of layered wood
systems with interlayer slips. Itani and Hiremath [19] also studied
the behavior of partial-interaction of composite beams by
employing the finite difference method. Ayoub and Fillippou
[20] presented the two-field mixed element for nonlinear steel–
concrete composite beam to analyze the behaviors of the compo-
site beams under cyclic load. Dall’Asta and Zona [21] derived
three-field mixed formulation for the non-linear analysis of
composite beams with deformable shear connection. Faella
et al. [22] formulated the ‘‘exact’’ analytical expression of stiffness
matrix of steel–concrete composite beams with flexible shear
connection, and Ranzi et al. [23] then investigated the creep and
shrinkage effects of concrete on the partial-interaction composite
members. Čas et al. [24] developed a new finite element formula-
tion for the non-linear analysis of two-layer composite planar
frames with an interlayer slip based on the geometrically non-
linear Reissner’s beam theory with small slip assumption. Ranzi
and Bradford [25] developed an element for partial-interaction
composite members to analyze the properties of continuous
composite beams with multi-span in the cases of serviceability
limit state and ultimate limit state. Ranzi and Zona [26] presented
an analytical model for the analysis of steel–concrete composite
beams with partial shear interaction, which is obtained by
coupling an Euler–Bernoulli beam for the reinforced concrete
slab to a Timoshenko beam for the steel beam. Sousa and DaSilva
[27,28] presented an alternative procedure for nonlinear numer-
ical analysis of composite beams, where the partial connection
between the elements is dealt with especially designed interface
elements. Schnabl et al. [29] proposed a locking-free two-layer
Timoshenko beam element with interlayer slip. Zona and Ranzi
[30] discussed three different beam models and relevant elements
for non-linear analysis of composite beams with interlayer slip.
Nguyen et al. [31] derived the exact stiffness matrix for a two-
layer Timoshenko beam element with partial interaction.

Variational methods play an important role in the structural
analysis since they can be used to derive the governing differential
equations and develop approximate methods including FEM.
Challamel and Girhammar [32], for example, investigated the
buckling of partial composite beam-columns based on variational
theories. Moreover, and perhaps most importantly, the variational
method provides a natural means for approximation or establishes
the foundation of the most powerful approximate methods. In the
above-mentioned some works concerning FEM [18–31], the prin-
ciples of virtual work and minimum potential energy were used to
derive the formulation of the elements. However, these variational
principles were not presented systematically and some variational
principles were rendered in terms of stresses and strains rather
than the stress resultants, deflection and rotation, which were
more convenient to formulate based on beam theories. For this
purpose, this paper presents the principle of virtual work and
reciprocal theorem of work in terms of the stress resultants,
deflection and rotation, and proves the principles of minimum
potential energy and minimum complementary energy of

partial-interaction composite beams. All the work is based on
the kinematical assumptions of Timoshenko’s beam theory, where
the uniform shear deformation is assumed in two sub-elements. In
addition, the variational formulae of frequency of free vibration
and critical load of buckling are deduced, as well as the general-
ized variational principle with two types of variables. The analysis
of buckling behavior is based on the Engesser theory [32], in which
the axial force is chosen always parallel to the non-deformed
beam axis. Finally, several examples are illustrated and demon-
strated through numerical examples.

2. Formulation

2.1. Description of problems and assumptions

It is supposed a composite beam with two sub-elements of
different materials in the xz plane, as shown in Fig. 1. The x axis is
through the centroid of the whole cross-section of the composite
beam in which Ei, Gi, Ii, Ai and riði¼ 1,2Þ denote Young’s modulus,
shear modulus, moment of inertia, cross-sectional area and the
mass density of the two sub-elements, respectively. L and H

indicate the length and total height of the beam, respectively, and
the symbols h1 and h2 are the distances from the centroids of the
two sub-elements to the interface between the two sub-elements,
respectively, and h¼ h1þh2.

In order to keep the integrity of this work, the assumptions for
partial-interaction composite members in many literatures [7] are
repeated as following: (1) all of the constitutive materials behave
linearly and the deformations are small; (2) the shear connectors
between the two sub-elements are continuous and distributed long-
itudinally1 ; (3) the shear force of the shear connector is proportional
to the interlayer slip; (4) no transverse separation occurs on the
contact interface, which means that the curvature is the same for
both sub-elements at any cross-section. (5) Timoshenko’s beam
theory is adopted for two sub-elements, i.e., transverse shear defor-
mations of the cross-section are allowed together with the rotary
inertia and the shear deformations are identical in the two sub-
elements.

2.2. Kinematical relationship

In Fig. 2, u1 and u2 are the longitudinal displacements of the
centroids of the cross sections of two sub-elements, respectively.
The rotary angle is denoted by c, which is assumed to be equal in
the two sub-elements. According to assumptions (4) and (5), the

Fig. 1. Partial-interaction composite beams: (a) elevation and (b) cross section.

1 This assumption is somewhat different from others available in literatures

where the shear connectors are assumed uniformly distributed. In practical, the

shear connectors are usually non-uniformly distributing, even discrete. This case

cannot be dealt conveniently in a strong form, i.e., differential equations, of

governing equations of composite beams. On the contrary, it is natural in the weak

form. Thus, the assumption of uniformly distribution of shear connector is

dropped. Furthermore, the present energy methods can readily cope with the

discrete shear connectors although the assumption of continuously distributing of

shear connectors is remained for the sake of simplification of formulation.
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