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a b s t r a c t

The nonlinear dynamic response of a cantilever rotating circular cylindrical shell subjected to a

harmonic excitation about one of the lowest natural frequency, corresponding to mode (m¼1,

n¼6),where m indicates the number of axial half-waves and n indicates the number of circumferential

waves, is investigated by using numerical method in this paper. The factor of precession of vibrating

shape B is obtained, with damping accounted for. The equation of motion is derived by using the

Donnell’s nonlinear shallow-shell theory, and is general in the sense that it includes damping, Coriolis

force and large-amplitude shell motion effects. The problem is reduced to a system of ordinary

differential equations by means of the Galerkin method. Three different mode expansions are studied

for finding the proper one which is more contracted and accurate to investigate the principal mode

(i.e., m¼1, n¼6) response. From the present investigation, it can be found that for principal mode

resonant response, there are two traveling waves with different linear frequencies due to the effect of

precession of vibrating shape of rotating circular cylindrical shells; the effects of additional modes n and

k (multiples of frequency) on the principal mode resonant response are insignificant compared with an

additional mode m, showing that it is better to adopt two neighboring axial modes to study the

principal resonant response of the system.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Rotating circular cylindrical shells are widely used in many
industrial applications, such as gas turbine engines, electric
motors, rotary kilns and rotor system. Hence, vibration character-
istics of rotating cylindrical shells are of great importance. The
precession of vibrating shape is a significant phenomenon for
rotating cylindrical shells. When a circular cylindrical shell rotates
about its centre axis, the vibrating shape shall not keep stationary,
but move in a concentric circular path along the shell, which
increases the difficulty to research the character of this structure.
Some researchers have investigated the dynamics of rotating
circular cylindrical shells; the first study is due to Bryan [1] who
discovered the existence of precession of vibrating shape and
obtained the expressions of the factor of precession for cirque and
infinite length circular cylindrical shells. The effects of Coriolis
and centrifugal forces on rotating shells have also been discussed
by DiTaranto [2] and Huang [3]. Considering nonlinearity, Chen
et al. studied finite length rotating cylindrical shells [4]. A method
based on the use of the Love’s first approximation theory was
presented to study the free vibrations of a rotating truncated

circular conical shell with simply supported boundary conditions
by Lam and Li [5]. Ng et al. [6] first examined the parametric
resonance phenomena in simply supported cylindrical shells.
Using the generalized differential quadrature method, Li and Lam
[7] carried out natural frequency analysis of thin rotating isotropic
cylindrical shells. Critical speed of a rotating cylindrical shell with
axial load has been studied by Ng and Lam [8]. Lee and Kim [9]
studied the linear and nonlinear frequencies of a hybrid
cylindrical shell by the Rize–Galerkin method. The vibration of
rotating cross-ply laminated circular cylindrical shells with
stringer and ring stiffeners was analyzed by Zhao et al. [10]. Liew
et al. [11] proposed a meshfree method—the harmonic reprodu-
cing kernel particle (HRKP) method to study the effects of
boundary conditions on the frequencies of rotating cylindrical
shells, with the effects of the Coriolis and centrifugal force
considered. The dynamic stability of composite laminated,
functionally graded and rotating cylindrical shells under periodic
axial forces were investigated by Liew et al., Ng et al. and Liew
et al., respectively [12–14]. Using the wave propagation approach,
the parametric analysis of frequency of rotating laminated
composite cylindrical shells was studied by Zhang [15].

Noting the lack of published works on the dynamic response
associated with the effect of precession of vibrating shape of
rotating circular cylindrical shells, in the present study, the
nonlinear response of a cantilever rotating circular cylindrical
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shell, as shown in Fig. 1, with respect to the effect of precession of
vibrating shape, is attempted to analyze. The factor of precession
with respect to damping not considered by researchers before is
obtained, which will be more accurate to predict the actual case of
the vibrating shell. Based on the Donnell’s nonlinear shallow-shell
theory, nonlinear governing equation of the rotating circular
cylindrical shell is derived, including the effects of the Coriolis
force, damping and geometric large-amplitude. This paper is Part I
of a series of papers which concern numerical solution of the
governing equation. In particular, in order to reduce a drastic
calculating effort, it is important to use only the most significant
mode. The purpose of the present paper is to find the mode
expansion which is more accurate and simpler describing the
resonant response of rotating shells with precession of vibrating
shape in the neighborhood of the principal mode (m¼1, n¼6).

2. Differential equation of motion

The circular cylindrical shell shown in Fig. 1(a) is considered to
be thin, with length L, wall thickness h and middle-surface radius
R and rotating with fixed edge at a constant angular velocity O
about the x-axis. Its material properties are mass density r, the
Poisson ratio m, the Young’s modulus E and the coefficient of
damping c. A cylindrical coordinate system (x, y, z) is chosen, with
the origin placed at the centre of one end of the shell, where x is
the axial and z is the radial coordinate. The displacements of
points of the middle surface of the shell are denoted by u, v and w,
in the axial, circumferential and radial directions, respectively; w

is taken positive outwards. The harmonic excitation is assumed to
be in the neighborhood of the mode (m, n) of the shell having
prevalent radial displacement. Fig. 1(b) shows the precession of
vibrating shape phenomenon of a rotating shell, where the rotary
angle f1, the precession angle f and the factor of precession of
vibrating shape B have the relationship f¼Bf1.

Different from the Bryan’s work [1], the effect of damping on the
factor of precession B is considered in this paper. The rotating of the
shell about the x-axial denotes a movement, and can be regarded as
a principle vibration, of which resonance frequency equal to zero.
According to the summation of kinetic energy and potential energy
keeping constant for principle vibration, and principle vibration not
transferring energy to other principle vibrations, we get
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where the symbol d is the variational symbol and is treated
mathematically like a differential symbol, and here _j ¼ @j=@t.

The following displacements w and v, including the effect of
the precession of vibrating shape, have been used

wðx, y, tÞ ¼WmðxÞ½C1ðtÞcosnðy�jÞþC2ðtÞsinnðy�jÞ�, ð2Þ

vðx, y, tÞ ¼ VmðxÞ½C1ðtÞsinnðy�jÞ�C2ðtÞcosnðy�jÞ�, ð3Þ

where Wm(x) and Vm(x) are the functions of axial vibrating shape
of the shell, and C1(t) and C2(t) are unknown functions of time t.

For the circular cylindrical shell, the following relationships
are introduced [16]:
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Fig. 1. (a) Coordinate system of a rotating cylindrical shell and (b) precession of

vibrating shape of a rotating cylindrical shell.

Nomenclature

c the coefficient of damping of the shell
D the flexural rigidity of the shell
E Young’s modulus of the shell
F external excitation
h the wall thickness of the shell
Italic d Dirac delta function
k multiples of frequency
L the length of the shell
m the number of axial half-waves
n the number of circumferential waves
R the middle-surface radius of the shell

Roman d variational symbol
t time
B the factor of precession of vibrating shape
r the mass density of the shell
m the Poisson ratio of the shell
j the angle of precession of vibrating shape
j1 rotary angle of the shell
F Airy stress function
o radian frequency of external excitation
om,n the linear radian frequency corresponding to the

mode (m, n)
O the angular velocity of the rotating shell
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