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a b s t r a c t

A rotating blade with a precone angle is usually designed, but little literature has investigated the effect

of the precone angle on vibration. This paper investigates divergence instability and vibration of a

rotating Timoshenko beam with precone and pitch angles. It uses Hamilton’s principle to derive the

coupled governing differential equations and boundary conditions for a rotating Timoshenko beam.

Analytical solution of an inextensional Timoshenko beam without taking into account the Coriolis force

effect can be derived. Some simple relations among the parameters of rotating Timoshenko beams

are revealed. Based on these relations, one can predict the natural frequencies and parameters of

other systems from those of known systems. Moreover, the mechanism of divergence instability

(tension buckling) is investigated. Finally, the effects of the parameters on natural frequencies, and the

phenomenon of divergence instability are investigated.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Rotating beams, which have importance in many practical
applications such as turbine blades, helicopter rotor blades,
airplane propellers, and robot manipulators, have been investi-
gated for a long time. An interesting review of the subject can be
found in the papers by Leissa [1], Ramamurti and Balasubrama-
nian [2], Rosen [3], Lin [4,6], and Lin et al. [5,7]. Little attention has
been focused on the investigation of the mechanism of instability
because of its complexity. So far, no analytical solution for
the vibration of a rotating beam with a precone angle has been
presented.

Conventionally, Refs. [8–14] investigated the effects of
tip mass, rotating speed, hub radius, pitch angle, taper ratio,
shear deformation, rotary inertia, and elastic root restraints on
the natural frequencies of transverse vibrations of a rotating
beam. Regarding stability investigation, Lee and Lin [15] studied
the vibration and the phenomenon of divergence instability of
a rotating Timoshenko beam. Young and Lin [16] studied the
stability of a cantilever tapered pretwisted beam with varying
speed by using the Galerkin method. Kar and Neogy [17] used the
Ritz method to study the stability of a rotating pretwisted
cantilever beam. However, they did not investigate the effect of
the precone angle on the stability and the mechanism of
instability. Lin and Lee [18] studied the vibration and instability

of a rotating frequency-dependent structurally and viscously
damped beam with an elastically restrained root and root
dampings. Lin [4] investigated the bending vibrations of a rotating
Timoshenko beam. An analytical solution of this system was
presented. Moreover, the influence of the parameters on natural
frequencies, and the phenomenon of divergence instability were
studied. But the effects of Coriolis force and the precone angle
were not considered. Hodges and Ormiston [19] found that
increasing the precone angle reduced the instability of a rotating
beam. However, the complete relation between the instability and
the precone angle was not discussed. Hosseini and Khadem [20]
investigated the reliability of a rotating beam under random
excitation. For preventing resonance, Maalawi and Negm [21]
investigated the geometry design of a wind turbine blade with
respect to the maximum frequency design criterion. The effect
of the precone angle on the natural frequency was not clearly
discussed. Lin et al. [5] investigated the vibration problem of a
rotating Bernoulli–Euler beam with precone and pitch angles.

In this paper, the analytical methods given by Lin [4]
and Lin et al. [5] will be used to solve the vibration problem
of a rotating Timoshenko beam with precone and pitch angles.
Moreover, the mechanism of divergence instability will be
investigated.

2. Coupled governing equations and boundary conditions

Consider the flexural and axial motions of a rotating
Timoshenko beam. The beam is elastically mounted with pitch
angle y and precone angle f on a hub and rotates with constant
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angular velocity O, as shown in Fig. 1. Describe the displacement
vector of a point of the beam by ~r ¼ ðxþ uÞ~iþ ðyþ vÞ~jþ ðzþwÞ~k

where {x, y, z} are the coordinates of the point in the rotating
beam frame and {u, v, w} are its corresponding displacements.
The displacement fields of the beam in the x-, y-, and z-directions
are

uðx; z; tÞ ¼ u0ðx; tÞ þ zCðx; tÞ; v ¼ 0; w ¼ wðx; tÞ. (1)

The velocity vector of the point (x, y, z) in a beam is the derivative
of the displacement vector and derived as

~V ¼
qu

qt
~iþ

qw

qt
~kþ ~O�~r

¼
qu

qt
þ ðzþwÞO sin y cos fþ yO cos y cos f
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þ
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~k, (2)

where ~O ¼ Oðsin f~iþ sin y cos f~jþ cos y cos f~kÞ.
The potential energy and the kinetic energy of a beam,

respectively, are
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Application of the Hamilton’s principle yields the following
governing differential equations:
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Nomenclature

A(x) cross-sectional area of the beam
b(x) dimensionless bending rigidity ( ¼ E(x)I(x)/E(0)I(0))
E(x) Young’s modulus of beam material
G(x) shear modulus of beam material
g(x) dimensionless mass moment inertia ( ¼ J(x)/J(0))
h(x) height of the beam
I(x) area moment inertia of the beam
J(x) mass moment of inertia of the beam per unit length
KT translational spring constants at the left end of the

beam
Ky rotational spring constants at the left end of the beam
L length of the beam
m(x) dimensionless mass per unit length

( ¼ r(x)A(x)/r(0)A(0))
N centrifugal force ð¼ O2 cos2 f

R L
x rAðxþ RÞdxÞ

n(x) dimensionless centrifugal force
ð¼ a2 cos2 f

R 1
x mðwÞðr þ wÞdwÞ

q(x) dimensionless shear rigidity ( ¼ kG(x)A(x)/kG(0)A(0))
T kinetic energy
t time variable
U potential energy
u, v, w displacements of the beam in the x, y, z-direction
u0 axial neutral displacement due to axial force
~V velocity
W dimensionless displacement of the beam in the z-

direction ð¼ w̄=LÞ

x length variable of the beam
a dimensionless rotating speed

ð¼ OL2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð0ÞAð0Þ=½Eð0ÞIð0Þ�

p
Þ

bT dimensionless translational spring constants
( ¼ KTL3/[E(0)I(0)])

by dimensionless rotational spring constants
( ¼ KyL/[E(0)I(0)])

eij strain
f precone angle
g1i dimensionless translational spring constant

ð¼ bi=ð1þ biÞ; i ¼ T ;yÞ
g2i dimensionless rotational spring constant

ð¼ 1=ð1þ biÞ; i ¼ T ; yÞ
Z dimensionless ratio of mass moment inertia to mass

at x ¼ 0 ð¼ Jð0Þ=½rð0ÞAð0ÞL2
�Þ

k shear correction factor of the beam
L dimensionless frequency ð¼ oL2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð0ÞAð0Þ=½Eð0ÞIð0Þ�

p
Þ

m dimensionless ratio of bending rigidity to shear
rigidity at x ¼ 0 ð¼ Eð0ÞIð0Þ=½kGð0ÞAð0ÞL2

�Þ

y pitch angle
r(x) mass density per unit volume
sij stress
O rotating speed
o angular frequency of beam vibration
x dimensionless distance to the root of beam ( ¼ x/L)
C angle of rotation due to bending

Fig. 1. Geometry and coordinate system of a rotating beam.
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