
Vibration of skew plates by the MLS-Ritz method

L. Zhou, W.X. Zheng �

School of Computing and Mathematics, University of Western Sydney, Locked Bag 1797, Penrith South DC, NSW 1797, Australia

a r t i c l e i n f o

Article history:

Received 31 May 2006

Received in revised form

20 April 2008

Accepted 5 May 2008
Available online 15 May 2008

Keywords:

Vibration

Skew plates

Ritz method

Moving least square method

a b s t r a c t

This paper presents a study on the vibration of skew plates by a numerical method, the moving least

square Ritz (MLS-Ritz) method which was proposed by the authors in a previous study [Zhou L, Zheng

WX. A novel numerical method for the vibration analysis of plates. Computational mechanics WCCM VI

in conjunction with APCOM’04, Beijing, China, 5–10 September 2004; Zhou L, Zheng WX. MLS-Ritz

method for vibration analysis of plates. Journal of Sound and Vibration 2006;290(3–5):968–90]. One

of the most challenging numerical difficulties in analysing the vibration of a skew plate with a large

skew angle is the slow convergence due to the stress singularities at the obtuse corners of the plate. The

MLS-Ritz method is employed in this paper to address such problem. This method utilises the moving

least square technique to establish the trial function for the transverse displacement of a skew plate and

the Ritz method is applied to derive the governing eigenvalue equation for the skew plate. The boundary

conditions of the plate are enforced through a point substitution technique that forces the MLS-Ritz trial

function satisfying the essential boundary conditions along the plate edges. Due to the flexibility of the

arrangement of the MLS-Ritz grid points, more grid points can be placed around the obtuse corners of a

skew plate so as to address the stress singularity problem at the corners. A series of cases for rhombic

plates of various edge support conditions are presented to demonstrate the efficiency and accuracy of

the MLS-Ritz method.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The study of buckling and vibration of skew plates dated back
to the early 1950s when there was a need to investigate the
mechanical properties of the then new swept-wing aircraft
concept [3]. Skew plates are also widely employed in other
practical structures, such as skew bridge decks, skew floor slabs,
vehicle bodies and ship decks. Leissa [4] pointed out that no exact
solutions exist for the vibration of skew plates and approximate
numerical methods must be used to obtain solutions for such
plates. A series of early investigations on the vibration behaviour
of skew plates [5–9] were reviewed in Leissa’s monograph [4].
Among these early studies, the Rayleigh-Ritz method was one of
the most frequently used methods in analysing the vibration of
skew plates [5–9]. Other methods used are Trefftz method [10],
the perturbation method [11] and the point matching method [9].

The study on vibration of skew plates has attracted much
attention since 1970s. Sathyamoorthy and Pandalai [12] employed
the Berger approximation to study the relationship between the
period and amplitude of skew plates based on an assumed mode
shape. Mizusawa et al. [13] studied the free vibration of skew

plates by the Rayleigh-Ritz method with B-spline functions as the
Ritz trial functions to solve vibration of skew plates with arbitrary
boundary conditions. It was found that, in general, the conver-
gence of the vibration frequencies became less satisfactory with
the increase in the skew angle of the plates. Mizusawa et al. [14]
proposed a modified Rayleigh-Ritz method to analyse skew plates.
Both geometric and natural boundary conditions were satisfied by
using the Lagrange multiplier technique. Mizusawa and Kajita [15]
also employed the spline strip method to investigate the vibration
and buckling of skew plates with edges elastically restrained in
rotation. A reduction method was proposed by Sakata [16] with a
few approximation formulae for numerically estimating the
natural frequency of simply supported isotropic and orthotropic
skew plates. Gorman [17] studied the vibration of simply
supported and clamped rhombic plates using the superposition
method. Bardell [18] proposed a hierarchical finite element
method to determine the natural frequencies and modes of flat,
isotropic skew plates. The free edges and point supports were
considered in his study.

Liew and Lam [19] employed the Rayleigh-Ritz method with
2D orthogonal plate functions as the Ritz trial function to study
free vibration of skew plates. Rhombic plates with various
combinations of edge support conditions were considered and
good convergence and accuracy were demonstrated in their study.
Liew and Wang [20] developed the pb-2 Ritz method to study the
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vibration of skew plates with different edge conditions, skew
angles, aspect ratios and internal line supports. A comprehensive
literature survey on the vibration of thin skew plates was
presented in the paper. The pb-2 Ritz method was extended to
study the buckling and vibration of thick skew plates based on the
Mindlin shear deformable plate theory [21–23] and 3D elasticity
[24,25]. Singh and Chakraverty [26] used the Rayleigh-Ritz
method to determine the frequencies of skew plates with all
possible combinations of boundary conditions and various skew
angles. The boundary characteristic orthogonal polynomials were
used to determine the transverse vibration of a rectangular or
skew plate under different boundary conditions. Their results
appeared not converged when the skew angle of the plates
becomes large. Hadid and Bashir [27] employed the spline-
integral method to calculate the natural frequencies of beams,
rectangular and skew plates with different skew angles and
simply supported edges. Han and Dickinson [28] studied the
vibration of thin, symmetrically laminated skew plates by the Ritz
method. Zitnan [29] studied the transverse vibration of rectan-
gular and skew plates by the Rayleigh-Ritz method using B-spline
trial functions. Recently, Woo et al. [30] carried out a study on the
free vibration of skew Mindlin plates by employing the p-version
of finite element method.

Although there are extensive studies on the vibration of skew
plates in the open literature, the accuracy of the vibration
solutions is not well addressed, especially for skew plates with
large skew angles. It is due to the presence of strong stress
singularity at the supported obtuse corners in the skew plates. The
stress singularities of the skew plates lead to the difficulty of
convergence when using numerical methods to determine
accurate buckling, vibration and bending results for such plates
[31]. Leissa and co-workers conducted a series of studies on free
vibration of skew plates using the Ritz method in association with
the corner stress singularity functions to address this problem
[31–36]. Their studies showed that the inclusion of the stress
singularity functions improves the convergence of vibration
frequencies significantly and they were able to obtain accurate
vibration frequencies for skew plates with large skew angles.

This paper employs the newly developed moving least square
Ritz (MLS-Ritz) method [1,2] to analyse the vibration of rhombic
plates. The purpose of the paper is to further verify and illustrate
the MLS-Ritz method’s validity and efficiency in dealing with
rhombic plates of various combinations of edge support condi-
tions and large skew angles. The influence of the MLS grind points
on the convergence and accuracy of the method for analysing
rhombic plates with large skew angles will be studied in details.

2. Mathematical modelling

Fig. 1 shows an isotropic, elastic skew plate of length a, width
b, skew angle b and uniform thickness h in a Cartesian coordinate
system. The plate is of the modulus of elasticity E, the Poisson
ratio u and the mass density r. The total potential energy
functional of the plate based on the classical plate theory in
harmonic vibration can be expressed as [4]:
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where w(x, y) is the transverse displacement at the midsurface the
plate, D ¼ Eh3=½12ð1� u2Þ� is the flexural rigidity of the plate, A is
the area of the plate and o is the circular frequency of the
vibration which needs to be determined.

As the Ritz method is used to derive the governing eigenvalue
equation for the plate system, only essential boundary conditions
need to be satisfied:

� For a simply supported edge

w ¼ 0 (2)

� For a clamped edge

w ¼ 0;
qw

qs
¼ 0, (3)

where s is the normal direction to the edge. No constraint is
needed for a free edge.

The MLS-Ritz method was developed by the authors and
was applied to study the vibration of rectangular and triangular
plates [2]. This method is briefly presented in this section for
the consistence and easy reference. The Ritz trial function is
first established through the MLS technique. A number of
pre-determined points are selected on the calculation domain of
the plate (see Fig. 1). The distribution of the points can be
regular or irregular, depending on the requirement of the problem
at hand.

Employing the MLS-Ritz method, the transverse displacement
of a plate at an arbitrary point (x, y) can be approximated by the
following expression [2]:

wðx; yÞ �
XN

i¼1

Riðx; yÞwi ¼ Rw ¼ wTRT, (4)

where N is the total number of grid points in the calculation
domain, wi in w ¼ ½w1 w2 � � � wn �

T is the ith nominal value of
displacement at (xi, yi), and the function Ri(x, y) in R ¼
½R1ðx; yÞ R2ðx; yÞ � � � Riðx; yÞ � � � Rnðx; yÞ � can be determined
as follows:

Riðx; yÞ ¼ pTðx; yÞA�1giðrÞpðxi; yiÞ
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Riðx; yÞ ¼ 0 if r ¼
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in which d is the radius of domain of influence in the MLS
interpolation (see Fig. 1), pðx; yÞ ¼ ½ p1ðx; yÞ p2ðx; yÞ � � � pm

ðx; yÞ�T is a finite set of basis functions of a complete space, gi(r)
is a weight function which takes the form as given below in this
study:

giðrÞ ¼
ð1� r2Þ

k if rp1;

0 if r41;

(
(7)
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Fig. 1. Dimensions and coordinate system for a skew plate.
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