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a b s t r a c t

The thermal expansions and rotations that result from a linear in-plane temperature gradient field are

fully restrained at the ends of a fixed beam. These restrained expansions and rotations will produce

internal bending and compressive actions in the beam, and these actions increase with an increase of

the temperature differential and average temperature of the linear temperature gradient field. When

these actions reach critical values, the fixed beam may bifurcate from its primary equilibrium state to a

buckled equilibrium configuration. This paper presents a systematic treatment of classical buckling

analysis for thermoelastic lateral-torsional buckling and for in-plane thermoelastic flexural buckling of

a fixed beam of doubly symmetric open thin-walled cross-section that is subjected to a linear

temperature gradient field over its cross-section. It is shown that the effective centroid and shear centre,

rather than the geometric centroid and shear centre, should be used in formulating the thermoelastic

prebuckling and buckling analysis and that the effects of temperature on the buckling resistance need to

be considered. The thermoelastic lateral-torsional buckling of a fixed beam under a linear temperature

gradient field is more complicated than its mechanical counterpart for uniform bending or for uniform

compression, and iterative methods are needed to obtain accurate solutions.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

When a beam is subjected to an in-plane temperature gradient
field along the axis o�y� (Figs. 1a and b) that varies linearly from
the bottom surface to the top surface of the cross-section, the heat
tends to expand the fibres of the beam axially, i.e. in the direction
of the axis o�z� and the possible expansions that result from this
are also distributed linearly in-plane over the cross-section. This
expansion gradient also tends to produce an in-plane curvature of
the beam, and to cause the beam to deflect transversely in the
plane of the temperature gradient [1–3]. For a fixed beam, its end
thermal rotations are fully restrained; the restrained rotation will
produce uniform bending in the fixed beam as shown by Gere and
Timoshenko [1] and Gere [2]. For simplicity, the elastic modulus
was treated in Refs. [1,2] as a constant over the entire beam, but it
is well known that the elastic modulus of a material is a function
of the temperature [5–7]. Because the temperature at a material
point of the beam in a linear temperature gradient field is a
function of the coordinates of the point, the elastic modulus at the
point is also a function of its coordinates, and so the assumption of
the elastic modulus of the fixed beam under a linear temperature
gradient field as being a constant over the entire beam may lead to

errors. In addition to uniform bending, a fixed beam is also
subjected to an axial compressive action because the axial
expansions of its ends are also fully prevented. Therefore, a fixed
beam under a linear temperature gradient field is subjected to
combined bending and compressive actions.

In the analysis of members under axial compression, the axial
compressive force is usually assumed to act in the direction of the
geometric centroidal axis if the beam is homogeneous. However,
because the elastic modulus under a linear temperature gradient
field is a function of the coordinates of the material point,
the beam cannot be considered as homogeneous in resisting
thermoelastic action and an axial force that acts at the geometric
centroidal axis will produce additional bending moments in the
beam. To avoid the complexity of these additional bending
moments in the analysis, an effective centroidal axis needs to be
determined such that when an axial compressive force acts in the
direction of the effective centroidal axis, it produces pure axial
compression [4]. In many ways this concept is identical to that of
transformed areas in section composed of more than one material,
but formulating this under thermal loading is complicated.

The thermal bending moment and axial compressive force in a
fixed beam increase with an increase of the temperature
differential and of the average temperature. When the combined
bending and axial compressive actions reach a critical value, the
fixed beam may suddenly deflect laterally and twist out of the
plane of the temperature gradient and fail in a lateral-torsional
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bifurcation buckling mode or suddenly deflect in the plane of the
temperature gradient and fail in a flexural buckling mode (Figs. 1c
and d). In undertaking a lateral-torsional buckling analysis, an axis
system with the shear centre (or centre of twist) as its origin is
usually used [8], and in a mechanical elastic analysis, the shear
centre of a doubly symmetric cross-section coincides with its
geometric centroid [8]. However, in the thermoelastic buckling
analysis of a fixed beam under a linear temperature gradient field,
because the elastic modulus is a function of the temperature, it is
not known whether the shear centre of the cross-section coincides
with its geometric centroid or with its effective centroid. Because
the elastic modulus is a function of the temperature distribution,
the in-plane and out-plane bending, torsional, and warping
stiffnesses are also functions of temperature distribution. In
addition, a fixed beam under a linear temperature gradient field
is subjected to combined bending and compressive actions. All of
these factors make the thermoelastic buckling analysis of a fixed
beam under a linear temperature gradient field much more
complicated than that of a fixed beam under mechanical uniform
bending or that of a fixed column under mechanical uniform
compression.

The purpose of this paper is to present a systematic treatment
of the classical buckling analysis for thermoelastic out-of-plane
lateral-torsional and in-plane flexural buckling of a doubly
symmetric open thin-walled section fixed beam that is under a
linear in-plane temperature gradient field, and to derive the
solution for the critical temperature gradient and critical average
temperature for the thermoelastic buckling of the fixed beam
based on this systematic analysis. In order to facilitate the
investigation, formulas for determining the effective centroid,
shear centre and the centre of twist of a cross-section under a
linear temperature gradient field are also derived in this paper.

2. Effective centroid, shear centre, and centre of twist

2.1. Effective centroid

The following assumptions are used in this investigation for
thermoelastic analysis:

1. Beams are assumed to be elastic and sufficiently slender, i.e.
the ratio of their length to the dimensions of the cross-section

is sufficiently large (for practical purposes over about 10 : 1)
[5]. Deformations of these slender elastic beams can be
assumed to satisfy the Euler–Bernoulli hypothesis, i.e. the
cross-section remains plane and perpendicular to the beam
axis during deformation.

2. The states of deformation and temperature are treated as time-
independent, and so this separates the analysis of the
temperature field from that of the displacement field and
makes the problem uncoupled.

3. The temperature gradient is distributed linearly along the
principal axis o�y� of the cross-section with temperatures T1

and T2 at the most top and bottom fibre of the cross-section
(Fig. 2), but uniformly along the principal axis o�x� and the
geometric centroidal axis o�z�, i.e. the temperature at an
arbitrary point P is a linear function of its coordinate y�, but not
a function of its coordinates x� and z�. Hence, the temperature
at an arbitrary point P can be expressed as

Tðy�Þ ¼ Tave þ
DTy�

h

with Tave ¼
T1 þ T2

2
and DT ¼ T2 � T1, (1)

where h is the overall height of the cross-section. Because the
temperature gradient field is linear, the Euler–Bernoulli
hypothesis holds during the thermal deformation.

4. The coefficient of thermal expansion a is independent of the
temperature Tðy�Þ.

5. Because the thermoelastic analysis of slender beams is carried
out with the same degree of rigour as that accepted in the
theory of elasticity, expansions in the direction perpendicular
to the beam axis are assumed to be so small that they can be
disregarded in the analysis [9].

An arbitrary open thin-walled section shown in Fig. 2 is used in
the derivation of the effective centroid, shear centre and centre of
twist. When a beam is under a uniform temperature field, its
modulus of elasticity is uniform over the entire beam. In this case,
when an axial load is applied at the geometric centroid of the
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Fig. 1. Thermoelastic buckling of fixed beam: (a) fixed beam, (b) linear

temperature gradient, (c) lateral-torsional buckling and (d) in-plane buckling.
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Fig. 2. Shear stresses due to pure bending: (a) thin-walled element, (b) vertical

and horizontal shear forces and (c) stresses acting on infinitesimal element.
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