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Abstract

The dynamic stability problem of a viscoelastic Voigt–Kelvin rotating shaft subjected to action of axial forces at the ends is studied.

The shaft is of circular cross-section, it rotates at a constant rate about its longitudinal axis of symmetry. The effect of rotatory inertia of

the shaft cross-section is included in the present formulation. Each force consists of a constant part and a time-dependent stochastic

function. Closed form analytical solutions are obtained for simply supported boundary conditions. By using the direct Liapunov method

almost sure asymptotic stability conditions are obtained as the function of stochastic process variance, retardation time, angular velocity,

and geometric and physical parameters of the shaft. Numerical calculations are performed for the Gaussian process with a zero mean and

variance s2 as well as for harmonic process with amplitude H.
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1. Introduction

Rotating shafts, as elements of construction, often can take
position to lose stability. The stability problem of rotating
shafts arises when shafts are required to run smoothly at high
speed. Destabilizing factors can be compressive force, the
normal inertia force, as well as certain types of damping. So
internal damping has this effect, while external damping
generally has a stabilizing influence on the system.

The dynamic stability of rotating shafts, with omission
of the compressive force, was first analyzed by Bishop [1]
using a modal approach. The same problem using the
direct Liapunov method was examined by Parks and
Pritchard [2].

Shaw and Shaw [3] considered instabilities and bifurca-
tions in non-linear rotating shaft made of viscoelastic
Voigt–Kelvin material without compressive force.

Uniform stochastic stability of the rotating shafts, when
the axial force is a wide-band Gaussian process with zero
mean was studied by Tylikowski [4]. The rotating shaft

subjected to axial forces with simultaneous internal
damping (Voigt–Kelvin model) and external viscous
damping was analyzed by the same author [5].
Tylikowski and Hetnarski [6] examined the influence of

the activation through the change of the temperature on
dynamic stability of the shape memory alloy hybrid
rotating shaft.
Young and Gau [7,8] investigated dynamic stability of a

pre twisted cantilever beam with constant and non-
constant spin rates, subjected to axial random forces. By
using stochastic averaging method, they determined mean-
square stability condition in Ref. [7] and first and second
moment stability conditions in Ref. [8].
In the present paper almost sure stability of the rotating

viscoelastic Voigt–Kelvin shaft without accounting exter-
nal damping is investigated. The axial force is stochastic
process with known density function. Problem is solved by
direct Liapunov method, and stability regions are given as
function of geometric and physics parameters of the shaft.

2. Problem formulation

Let us consider a shaft rotating about its longitudinal
axis with angular velocity Ō, shown in Fig. 1. In this Figure

ARTICLE IN PRESS

www.elsevier.com/locate/ijmecsci

0020-7403/$ - see front matter r 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijmecsci.2007.05.006

�Corresponding author. Tel.: +381 18 500 635; fax: +381 18 588 244.

E-mail addresses: ratko@masfak.ni.ac.yu, ratpav@yahoo.com (R.

Pavlović).
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(X, Y, Z) is rotating coordinate system where Z-axis
coincides with longitudinal axis of the rotating shaft.

According to Young and Gau [7], governing differential
equations can be written in the form
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where u, v are flexural displacements in the X and Y

direction, r is mass density, A is area of the cross-section of
shaft, I is axial moment of inertia, E is Young modulus of

elasticity, ai is retardation time, T is time and Z is the axial
coordinate.
Using the following transformations:
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where ‘ is the length of the shaft and z is reduced
retardation time, we get governing equations as
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Boundary conditions for the simply supported shaft are
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The purpose of the present paper is the investigation of
almost sure asymptotic stability of the rotating shaft
subjected to stochastic time-dependent axial loads. To
estimate perturbated solutions it is necessary to introduce a
measure of distance k � k of solutions of Eqs. (4) and (5)
with nontrivial initial conditions and the trivial one.
Following Kozin [9], the equilibrium state of Eqs. (4) and
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Notation

A area of cross-section
I axial moment of inertia
E Young’s modulus
fcr dimensionless Euler’s critical force
fo dimensionless constant component of axial

force
f(t) dimensionless stochastic component of axial

force
F̄ axial force
l length of the shaft
r radius of gyration
p probability density function
P probability

t dimensionless time
T time
X, Y, Z shaft coordinates
z dimensionless axial shaft coordinate
u, v flexural displacements in X and Y direction,

respectively
V Liapunov’s functional
ai retardation time
z dimensionless retardation time
Ō angular velocity
O dimensionless angular velocity
r density
s2 variance of stochastic loading
E{ � } mathematical expectation
|| � || distance of solution from the trivial solution

Fig. 1. The rotating shaft and co-ordinate systems.
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