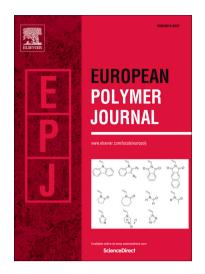
Accepted Manuscript

Preparation of redox- and photo-responsive ferrocene- and azobenzene-based polymer films and their properties

Xia Xia, Haojie Yu, Li Wang, Zheng Deng, Kenneth J. Shea, Zain-ul-Abdin


PII: S0014-3057(17)32102-X

DOI: https://doi.org/10.1016/j.eurpolymj.2018.01.023

Reference: EPJ 8256

To appear in: European Polymer Journal

Received Date: 26 November 2017 Revised Date: 5 January 2018 Accepted Date: 23 January 2018

Please cite this article as: Xia, X., Yu, H., Wang, L., Deng, Z., Shea, K.J., Zain-ul-Abdin, Preparation of redox- and photo-responsive ferrocene- and azobenzene-based polymer films and their properties, *European Polymer Journal* (2018), doi: https://doi.org/10.1016/j.eurpolymj.2018.01.023

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Preparation of redox- and photo-responsive ferrocene- and azobenzene-based polymer films and their properties

Xia Xia^a, Haojie Yu^{a*}, Li Wang^{a*}, Zheng Deng^a, Kenneth J. Shea^b, Zain-ul-Abdin^a

State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

^b Department of Chemistry, University of California, Irvine, CA, United States

Abstract

A series of redox- and photo-responsive copolymers, poly(2-(methacryloyloxy)ethyl ferrocenecarboxylate-*co*-4-methacryloylamino-4'-nitroazobenzene) (P(FcEMA-*co*-MAAzo)s) were synthesized using free radical polymerization. The synthesized copolymers were characterized by ¹H NMR, FT-IR, gel permeation chromatography (GPC) and thermogravimetric analysis (TGA). Cyclic voltammetry (CV) and Ultraviolet-visible (UV-vis) absorption studies showed redox- and photo-responsive properties of the synthesized copolymers in the solution. P(FcEMA-*co*-MAAzo)s films were prepared by spin-coating or drop-coating method and these films were found to be redox- and photo-responsive. The color of the prepared films could be adjusted by the redox stimulus, while UV-vis absorption properties of the prepared films could be adjusted by changing wavelength of light. It was found that these synthesized films show potential application for high density information storage.

Key words: Ferrocene, azobenzene, film, redox- and photo-responsive, information storage

1. Introduction

In recent years, with the development of internet technology, there is a tremendous demand of data storage devices^[1]. The polymer materials are the promising candidates for the next generation data storage devices due to their structural diversity, good flexibility and low cost^[2, 3]. Thus, much attention has been paid to the research of data storage polymer materials^[4, 5]. Among different kinds of polymer materials, redox- and photo-responsive materials are two kinds of most promising materials because of their fast, efficient and clean response behavior.

Ferrocene-based materials possess excellent (electro)chemical redox activity, thermal and

^{*} Correspondence to Haojie Yu, E-mail: hjyu@zju.edu.cn and Li Wang, E-mail: opl_wl@dial.zju.edu.cn Tel: +86-571-8795-3200 and Fax: +86-571-8795-1612.

Download English Version:

https://daneshyari.com/en/article/7803916

Download Persian Version:

https://daneshyari.com/article/7803916

<u>Daneshyari.com</u>