ELSEVIER

Contents lists available at ScienceDirect

European Polymer Journal

journal homepage: www.elsevier.com/locate/europolj

Modelling the transport of toluene liquid in protective polymer gloves using a fluorescent dye-tracing technique

Ming-Jen Chen ^{a,*}, Li-Hsin Cheng ^a, Tzu-Ping Tseng ^a, Yong-Sheng Huang ^a, Ching-Ho Lin ^b, Chin-Hsing Lai ^b

ARTICLE INFO

Article history:
Received 20 January 2015
Received in revised form 27 February 2015
Accepted 3 March 2015
Available online 9 March 2015

Keywords:
Toluene liquid
Polymer glove
Permeation test
Mass transfer
Fluorescent dye-tracing technique

ABSTRACT

The absence of adequate information about the phase change of liquid solvents within polymer-glove walls hinders the complete characterisation of the mass transfer of toluene liquid through the polymer membranes using the data obtained from ASTM F739 method for toluene liquid permeation testing. Therefore, an alternative fluorescent dye-tracing technique is used to account for the transport processes of toluene liquid through polymer gloves. The results of dye penetration experiments show that the displacement of liquid-phase toluene is proportional to the square root of immersion time, indicating that the transport behaviour of liquid-phase toluene is dominated by Fickian diffusion. Furthermore, a linear relationship between the mass sorption of toluene vapour and the sampling time is established, which suggests that the diffusion process in the vapour-phase toluene is governed by Case-II transport. Based on the combined analysis of the results obtained from permeation tests, immersion tests, fluorescent dye-tracer tests, and the pertinent calculations of thermodynamic properties, an evidence-based mechanism for the mass transfer of toluene liquid through the polymer-glove walls is proposed in terms of time-series processes. The model comprises three regimes: a liquid phase, a combined liquid-vapour phase, and a vapour phase of toluene that exist in series within the membrane. © 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Protective polymer gloves are widely used in workplaces to reduce the exposure of the workers to hazardous chemicals while handling organic solvents. It is dangerous to use the inappropriate gloves. Thus, an understanding of the chemical-resistance properties of the underlying polymeric materials plays an essential role in making the proper selection of the protective gloves to ensure the safety of the users. Although the transport mechanisms of solvents through polymer materials still remain complex and

E-mail address: chenmj2000@yahoo.com (M.-J. Chen).

ambiguous [1,2], it has been known since long that the permeability of the solvents through the polymer membranes depends on two essential properties: solvent solubility and diffusivity [3–5]. In addition, the size and nature of the solvent molecules [6], the composition and structure of the polymer materials [7,8], as well as changes in the polymer structure and mechanical properties due to the solvent-induced effect are important considerations [8–11].

The permeability of the solvents through the polymer gloves is commonly determined using the ASTM F739 standard testing procedure, which characterises the transport properties of organic solvents, such as breakthrough time and permeation rate, and provides an overall decrease in resistance rating. The observed data from the ASTM F739 method can be directly apprehended in terms of a time

^a Department of Occupational Safety and Hygiene, Fooyin University, 151 Chin-Hsueh Rd., Ta-Liao Dist., Kaohsiung 831, Taiwan

^b Department of Environmental Engineering and Science, Fooyin University, 151 Chin-Hsueh Rd., Ta-Liao Dist., Kaohsiung 831, Taiwan

^{*} Corresponding author. Tel.: +886 7 7811151x5111; fax: +886 7 7826735

Nomenclature			
a_s	activity of toluene liquid	Sw_{t_m}	mass-swelling ratio of polymer after a specified
C_0	concentration of toluene liquid (mg cm ⁻³)		immersion time
C_g	concentration of toluene vapour in the collec-	T	absolute temperature (K)
_	tion chamber (µg cm ⁻³)	t	sampling time (min)
C_s^*	concentration of toluene vapour at liquid-	t_b	breakthrough time (min)
-	vapour interface (μg cm ⁻³)	$t_{ heta}$	time of the occurrence of liquid-vapour phase
D_{BR}	diffusion coefficient of toluene liquid in butyl		coexistence (min)
	rubber (cm ² s ⁻¹)	t_e	time at equilibrium (min)
D_{NR}	diffusion coefficient of toluene liquid in nitrile	t_m	immersion time (min)
	rubber (cm ² s ⁻¹)	ν	kinetic constant (cm min ⁻¹)
E_{va}	evaporation rate of toluene within polymer	V_d	volume of dry polymer (ml)
	$({ m mgmin}^{-1})$	$\overline{V_s}$	molar volume of toluene solvent (cm ³ mol ⁻¹)
F_{ν}	mass flux of toluene vapour ($\mu g min^{-1} cm^{-2}$)	$W_{\rm eq}$	total mass of the wet polymer at equilibrium
F_e	equilibrium mass flux of toluene vapour		(g)
	$(\mu g min^{-1} cm^{-2})$	W_d	weight of dry polymer (g)
k	kinetic constant of Eq. (3)	W_{t_m}	total mass of the wet polymer after a specified
k_l	kinetic constant of liquid-phase toluene $(mg min^{-0.5})$		immersion time (g)
k_{ν}	kinetic constant of vapour-phase toluene	Greek letters	
	$({ m mg~min}^{-1})$	δ_{s}	solubility parameter of toluene solvent (cal/
L_0	original membrane thickness (mm)	-	$cm^3)^{0.5}$
L_b	membrane thicknesses at breakthrough time	δ_p	solubility parameter of polymer (cal/cm ³) ^{0.5}
	(mm)	ϕ_P	polymer volume fraction
L_e	membrane thicknesses at steady state (mm)	ϕ_{pe}	polymer volume fraction at equilibrium
Μ	mass sorption of solvent in polymer (mg)	ϕ_S	solvent volume fraction
M_L	mass sorption of liquid-phase toluene in	$ ho_p$	density of polymer (g ml ⁻¹)
	polymer (mg)	ρ_s	density of toluene liquid (g ml ⁻¹)
M_T	total mass sorption of toluene by polymer (mg)	Φ	penetration depth of toluene liquid (mm)
M_V	mass sorption of vapour-phase toluene in polymer (mg)	Φ_{BR}	penetration depth of toluene liquid in butyl rubber (mm)
$\frac{M_W}{M_c}$	molecular weight of toluene (mg) polymer molar mass between crosslinks	$\Phi_{ m NR}$	penetration depth of toluene liquid in nitrile rubber (mm)
	$(g \text{mol}^{-1})$	χ	polymer–solvent interaction parameter
n	kinetic exponent of Eq. (3)	Λ	position solvent interaction parameter
P_s^*	equilibrium vapour pressure of solvent at	Matho	matical
-	liquid-vapour interface (mmHg)		derivative of Φ with respect to $t_m^{0.5}$
$P_s^{\rm sat}$	saturation pressure of toluene solvent (mmHg)	$\frac{\mathrm{d}\Phi}{\mathrm{d}t_m^{0.5}}$	- ···
R	universal gas constant (cal/mol K in Eq. (5) or atm-l/mol-K in Eq. (13))	ΔC	concentration difference between C_s^* and C_g ($\mu g \text{ cm}^{-3}$)
S_d %	saturation swelling ratio of polymer		
S_l	solubility of solvent in polymer (g ml ⁻¹)		

record of outlet solvent concentration from the collection chamber of a permeation test cell, represented as a concentration-versus-time (C-t) curve. Meanwhile, a corresponding mass flux-versus-time (F-t) curve can also be derived from a C-t curve based on penetrant mass balance around the permeation test cell [8]. Both the *C*–*t* and the *F*–*t* curves have characteristic sigmoid shapes indicating a delayed response of solvent breakthrough in the membranes. Many researchers, who have conducted permeability tests for liquid- or vapour-solvent transport in the polymer gloves, have usually used both the C-t and the F-t curves to characterise the mass transfer behaviour of solvents through the polymer membranes [5,8,9,12–15]. However, irrespective of the phase of the solvent feed, notably the outlet solvent in the collection chamber of the permeation test cell is always in the vapour state in the ASTM F739

test. This raises an interesting question of whether the evaporation of the fed liquid solvent occurs on the outer surface of the membrane or within the bulk polymer matrix of the membrane during the permeation process.

According to the studies on liquid–vapour phase transition phenomena for a single liquid compound permeating a membrane [16,17], liquid and vapour solvent phases coexist in the polymer matrices during the liquid penetration process because of the Kelvin effect [18]. In addition, if the feed solvent is a liquid, some of it may be readily converted to the vapour phase inside the polymer matrix during the permeation test because of its high volatility. Moreover, recent studies on solvent vapour transport through the polymer-glove walls [8] indicated that the solvent mass uptake by polymers could be estimated using an *F–t* curve, in which the estimated amount of mass sorption

Download English Version:

https://daneshyari.com/en/article/7805579

Download Persian Version:

https://daneshyari.com/article/7805579

Daneshyari.com