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a b s t r a c t

The calculation of elastoplastic strains from stress histories, or vice-versa, is an important computational
step in low-cycle fatigue analyses. This step is a challenging task for general multiaxial non-proportional
(NP) loading histories, where the principal stress directions are not constant, requiring 6D incremental
plasticity calculations to correlate the six stress with the six strain components considering plasticity
effects. However, a large number of multiaxial fatigue problems only involve combined tension and/or
bending and torsion loads, which are associated with only one normal and one shear stress component.
The use of a special 2D formulation, instead of 6D, can greatly simplify the necessary incremental plas-
ticity calculations for these practical problems. In this work, a new 2D tension–torsion incremental plas-
ticity formulation is introduced, integrating non-linear kinematic (NLK) hardening models and NP
hardening effects in a very efficient way, exactly reproducing tension–torsion calculations from more
general 6D models, but with less than one fifth of the computational cost. The proposed 2D approach
is validated by comparing NP strain-controlled tension–torsion experiments in 316L steel tubular spec-
imens, a material that presents significant NP hardening effects, with experimental and predicted stress
paths, calculated either with 6D or the proposed 2D formulation.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Most engineering applications involve either known stress or
strain histories, but not both. New components are normally
designed based on stress histories calculated or estimated from
measured or specified design loads, whereas advanced structural
integrity evaluations use strain histories properly measured in
the field under actual service conditions; since stresses cannot be
measured, they can only be calculated. However, most multiaxial
fatigue models require both the stress and the strain histories to
quantify the damage induced by the loading history.

Calculation of multiaxial stresses from given strains or
vice-versa is a trivial task if the load at the critical point is linear
elastic (LE), only requiring the application of Hooke’s law. But for
low-cycle fatigue calculations, where cyclic plasticity effects can
be very significant, incremental plasticity models are usually
needed to correlate multiaxial stresses and strains, especially
under variable amplitude (VA) non-proportional (NP) loadings.
Two approaches can be followed in these cases to estimate crack

initiation lives: performing global elastoplastic (EP) incremental
finite element (FE) calculations for the entire component along
the loading history, a computationally prohibitive task for VA load
histories with many cycles or events; or instead use a much sim-
pler global–local approach [1–5], where a single LE FE calculation
on the entire piece is performed for a static unit value of each
applied loading, followed by local incremental plasticity calcula-
tions at every load step only at the critical point(s), to correct for
plasticity effects.

The former approach requires global Finite Element (FE) calcu-
lations to evaluate the interaction among EP stresses and strains,
considering as well stress gradient effects near the critical point.
This global EP FE approach thus needs to adopt an incremental
plasticity formulation in every element of the mesh that represents
the studied structural component that suffers plastic strains. This
requirement is computationally very intensive, especially when
dealing with long loading histories, since it implies in having to
solve the EP FE problem for the entire piece for every load incre-
ment of every load cycle (or of every load event in complex VA
cases, where cycles cannot be identified).

The global–local approach, on the other hand, can be very
accurate and computationally much more efficient if carefully
performed, as described next. Consider a general case of N applied
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loads (which could be e.g. forces, moments, or displacements),
with time histories given by F1ðtÞ; F2ðtÞ, . . ., see Fig. 1. A constant
unit load F1ðtÞ ¼ 1 is imposed to the piece in a LE FE calculation,
to obtain the resulting six stress and strain components at the
critical point, which would constitute the LE stress and strain
influence factors Krx1;Kry1;Krz1;Krxy1;Krxz1;Kryz1;Kex1;Key1;Kez1;

Kexy1;Kexz1, and Keyz1, see Fig. 1. Another LE FE calculation with only
F2ðtÞ ¼ 1 would then obtain the associated stress and strain influ-
ence factors Krx2;Kry2, . . ., Keyz2, and so on. These factors can then
be organized into LE stress and strain influence matrices, as shown
in Fig. 1, which calculate the so-called pseudo-stresses and pseudo-
strains (represented with a tilde ‘‘�” mark, see Fig. 1), i.e. stresses
and strains assumed to be LE, even though they in general might
not be elastic and thus later require elastoplastic corrections.

These matrices are then used to compute the so-called pseudo-
stresses and pseudo-strains which, as mentioned above, are
fictitious quantities calculated assuming the material follows
Hooke’s law at the critical point of the piece. The pseudo-stresses
~~r and strains ~~e are obtained after multiplying the actual value of
the loadings F1ðtÞ; F2ðtÞ, . . ., at each instant t by their associated
LE influence factors, and adding them at the critical point using
the superposition principle.

If the critical point is not evident, then these matrices need to be
calibrated for each potential critical location. The potential location
that results in the highest accumulated multiaxial fatigue damage
is then the critical point where the crack is expected to initiate. The
direction of such a crack could also be calculated using the critical-
plane approach for all candidate planes at this critical point [6].

The resulting pseudo-histories ~~rðtÞ and ~~eðtÞ can deal with mul-
tiple in- or out-of-phase loading sources applied to the structural
component, but they are LE values that in general still require EP
corrections to reproduce the true stresses and strains at its critical
point. Indeed, in their LE form they can only be used in the absence
of significant macroscopic plasticity at the critical point, i.e. they
are only useful for high-cycle fatigue calculations that do not
involve residual stresses induced by eventual overloads. Other-
wise, a proper multiaxial incremental plasticity formulation must
be used to account for cyclic kinematic, isotropic, and NP harden-
ing effects in the EP stress/strain behavior, in general considering
notch stress and strain concentration effects [1–5]. However, the
involved calculations require the solution of a set of dozens of stiff
differential equations, a challenging task that prevents its wide-
spread use in engineering problems without the aid of advanced
and dedicated commercial fatigue software, thus involving costs
that are usually prohibitive for small companies.

In the following sections, a new simplified yet accurate
incremental plasticity formulation is fully developed for combined

tension–torsion problems, a very important practical case induced
by normal and/or bending and torsional loads in common
components such as shafts and beams. It is shown that the full
6D stress–strain problem does not need to be solved in such cases,
which can be managed using a 2D reduced-order formulation that
much simplifies its computer implementation and also reduces the
calculation time in more than 80%.

2. Tension–torsion hardening formulation

Tension–torsion incremental plasticity calculations are most
efficiently performed in a 2D stress space rx � sxy

p
3, where rx is

the normal and sxy
p
3 is the effective shear stress. The yield surface

is defined as the root locus of the stress states~s ¼ rx sxy
ffiffiffi
3

p� �T
(or

stress points, where T stands for transpose of a vector or matrix)
where the material starts to yield. Under tension–torsion, the yield
surface can be described as a circle in this diagram if the material
follows the von Mises criterion, since

~s ¼ rx sxy
ffiffiffi
3

p� �T ) Y ¼ j~sj2 � S2 ¼ r2
x þ 3s2xy

� �
� S2 ¼ 0 ð1Þ

where S is the current radius of the yield surface, e.g. the monotonic
yield strength SY for a tensile test or the cyclic yield strength SYc for
a cyclically-stabilized loading, and Y ¼ 0 is the yield function.

2.1. Kinematic hardening formulation

Loading a piece above its yield limit in one direction reduces (in
absolute value) its yield strength in the opposite direction, a phe-
nomenon known as the Bauschinger effect. For a tension–torsion
history, this effect can be represented as a translation of the yield
surface, whose center translates to a so-called backstress position

~b ¼ bx bxy

ffiffiffi
3

ph iT
, see Fig. 2 [7]. This backstress vector is the quan-

tity that stores the plastic memory effects required for kinematic
hardening calculations.

Assuming the normal stresses in the x direction, if the material
is isotropic and thus has symmetry in the y and z directions, then
its elastic (el) and plastic (pl) strain components can also be repre-
sented in 2D, by

~eel � ð1þ mÞ � exel
cxyel

2�ð1þmÞ
ffiffiffi
3

ph iT
and ~epl � 3

2
� expl

cxyplffiffi
3

p
h iT ð2Þ

where m is Poisson’s ratio, e stands for normal and c for shear
strains.

This efficient representation is a 2D strain sub-space from the
5D deviatoric space introduced in [8] and further detailed in [9].

Fig. 1. FE-calibrated linear elastic matrices correlating several applied scalar load histories with the twelve resulting pseudo-stress and pseudo-strain histories at the critical
point.
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