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a b s t r a c t

The application of Bayesian methods to the problem of fatigue crack growth prediction has been growing
in recent years. In particular, sequential Monte-Carlo sampling is often presented as an efficient
model-based technique to filter the sequential measures of the damage evolution provided as an input
to the algorithm. However, a lot of measures are required to reliably identify the system state condition
and the underlying model parameters. Many studies rely on the availability of a relatively dense
sequence of crack length measures during damage evolution, made in most cases impractical by the con-
sequent maintenance costs. Thus, real-time damage diagnosis is a requirement to enable prognostic
health management.

This work focuses on the application of sequential Monte-Carlo sampling to estimate the probabilistic
residual life of a structural component subjected to fatigue crack propagation, while real-time estimation
of crack length is provided through a committee of artificial neural networks, trained with finite element
simulated strain patterns. Multiple crack length observations are available at each discrete time and are
provided as the input to the prognostic system, based on a sequential importance resampling algorithm.
Each time a new set of measures is available, the algorithm evaluates the posterior distribution of the
augmented state vector, including the crack length and a material parameter governing damage evolu-
tion. This filtered information is used to numerically update the probability density functions of the resid-
ual life of the component. The methodology is applied first to a simulated crack and then to a metallic
stiffened panel specimen subject to fatigue crack growth.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Fatigue crack growth (FCG) is a primary degradation process in
the field of metallic structure reliability, especially for aeronautical
applications, and the development of accurate models to describe
damage evolution is widely researched (Paris–Erdogan’s law [1],
Walker’s law, Forman’s law, NASGRO law [2], to mention a few
[3]). The increase of safety requirements and the necessity of
advanced maintenance strategies (e.g. the condition based mainte-
nance approach) [4] give rise to the adoption of stochastic
approaches to improve the reliability of the predictions with
respect to design expectations [5]. As a matter of fact, a more pre-
cise estimate of the residual life at a specific time can be provided
by the observation of the current condition of the component. This
gives rise to the conditional residual life (RL) probability density

function (PDF) estimate. At a specific point in time and for a partic-
ular observation of the condition of a component, a posterior PDF
for the residual life (conditional on the observation) can be evalu-
ated based on the availability of a prognostic model. This approach
is particularly well described in the Bayesian updating framework
[6,7], in which the a priori information on the RL is updated accord-
ing to the actual observations taken by a diagnostic tool.

Recent advances on sequential Monte-Carlo methods, specifi-
cally Sequential Importance Sampling/Resampling (SIS–SIR) algo-
rithms, allowed integrating multiple uncertainties related to the
measurement system and the intrinsic randomness of the degrada-
tion phenomenon with the mathematical FCG formulations [7–9].
Their suitability for the prediction of evolving phenomena by
sequentially updating of the system state estimation has already
been demonstrated [8,9]. However, these algorithms require (i) a
probabilistic model describing the system evolution, (ii) a stochas-
tic measurement model relating the measure to the system state
and (iii) a sufficient number of measures to guarantee the
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convergence of the algorithm state estimation to the target process
evolution [10]. The assumption that a sufficient number of mea-
sures are available from any non-destructive testing (NDT) mea-
suring apparatus is widely made [9–11]. This assumption is
however only applicable to cases in which maintenance costs are
not a primary issue and a maximum exploitation to RL estimation
can only be obtained when coupled to a real-time diagnostic sys-
tem providing automatic crack length measures [12], thereby
entering the field of structural health monitoring (SHM) [13]. The
aim of this paper is to monitor the damage evolution and to make
prognosis on a relatively complex metallic structure with a riveted
skin–stringer construction, where diagnosis is made by using an
SHM system based on a sensor network and a committee of artifi-
cial neural networks (ANNs). This work is an initial step towards
the on-line condition monitoring of aeronautical structures,
including a prognostic system able to filter multiple information
from the SHM diagnostic unit.

Focusing on the diagnostic problem, the algorithm for damage
identification requires extensive investigations. In [12], the authors
described the optimisation procedure for a diagnostic algorithm
based on ANNs, trained on finite element simulated strain patterns.
This algorithm is able to generalise to the experimental measures
well, providing damage detection, localisation and crack length
quantification. A sufficient level of generalisation is especially
important for the ANN when using simulation for algorithm train-
ing. In addition to some typical regularisation techniques such as
cross validation and early stopping, the authors grouped multiple
ANN models trained on Bootstrap datasets into one committee
[14], obtaining further algorithm regularisation. In practice, each
time a strain pattern is provided as the input to the diagnostic algo-
rithm, the diagnostic output is not a single indication but a series of
NANN outputs, being NANN the number of ANNs belonging to the
committee. Such distribution is related to the uncertainty intrinsic
to the diagnostic model training procedure [14]. Various methods
studying how to combine the outputs from multiple models are
present in the literature [15], the simplest way consists in averaging
the prediction of the set of individual models [12,15]. This com-
bined observation can be used as the input to the prognostic algo-
rithm. However, by simply averaging the observations the
information regarding the diagnostic model uncertainty related to
a particular measure is lost. A thorough method to combine the
multiple outputs from a diagnostic system into the prognostic SIR
framework is needed and is the objective of the present study.

In this work, at each discrete time step, the dispersion related to
the entire set of multiple observations is combined with the ran-
domness intrinsic to the FCG process, usually described within a
dynamic state space (DSS) [7], and a SIR algorithm is adopted to fil-
ter the total uncertainty. This filtered information is then used to
numerically update the posterior distribution of the residual life.
In order to filter also the uncertainty related to the FCG model
parameters [16–18], a SIR algorithm with an augmented state vec-
tor [19–22] has been implemented. One FCG model parameter typ-
ically associated with material properties in linear elastic fracture
mechanics is inserted into the state vector and its PDF is sequen-
tially updated in real time. This additional complexity is necessary
due to the very high FCG variability one can expect during repeated
tests [10,16]. The methodology is applied first to the identification
of a simulated crack growth process and then to a real metallic
stiffened panel specimen subjected to fatigue crack growth.
According to the recent literature, the validation of such a SHM tool
on realistic structures (i.e. the portion of a helicopter fuselage) con-
stitutes a novelty in the aeronautics panorama.

The paper is structured as follows: the theory of SIR algorithm is
shortly introduced in Section 2, with focus on the extension for
diagnostic output filtering as well as for the parameter estimation
with an augmented state vector. The critical aspects regarding the

SIR implementation for FCG prognosis are detailed in Section 3. The
results of the simulated FCG are presented in Section 4. Section 5 is
dedicated to the verification of the algorithm performance during
one FCG test, showing the overall prognostic system performances.
A critical discussion of the work and some possible future exten-
sions of the method are provided in the conclusive section.

2. Theory and methods

Extensive literature is available concerning the mathematical
aspects of sequential Monte-Carlo filters (two remarkable exam-
ples are [6,7]), therefore this section only summarises the primary
aspects of the algorithm procedure and the input requirements. In
particular, the basic formulation of system state filtering by SIR
algorithm is reported in Section 2.1, followed by its extension for
augmented state vector filtering in Section 2.2. The algorithm mod-
ification to receive multiple observations as the input is reported in
Section 2.3.

2.1. Basics on sequential importance resampling strategy

The definition of a DSS [7], including the model evolution Eq. (1)
(consisting of a hidden Markov process of order one) and the
observation Eq. (2) (linking the measures with the system state)
is considered.

xk ¼ f ðxk�1; #;xk�1Þ ð1Þ

zk ¼ hðxk;gkÞ ð2Þ

where xk is the system state at k-th discrete time, # is a vector col-
lecting the model parameters supposed to be constant during the
process evolution, xk�1 is the artificial process noise and gk is the
uncertainty affecting the observation zk. In a Bayesian updating
framework, the objective is to calculate the posterior PDF of the sys-
tem state at discrete time k, conditioned on the observations, indi-
cated as pðxk z1:kj Þ. This can be evaluated with the well-known
prediction and updating steps, respectively performed through the
Chapman–Kolmogorov equation and the Bayes’ rule [7].
Nevertheless the analytical solution of this problem is only possible
if the model is linear and each random process involved is Gaussian.
The SIR algorithm is a recursive Bayesian filter, commonly used to
approximate the state posterior distribution by a series of samples
(often referred to as particles). At each k-th discrete time, Ns parti-

cles xðiÞk [i = 1, . . ., Ns) approximate the posterior PDF of the system
state, pðxkjz1:kÞ. Each of these particles has a linked weight (3)

depending on the weight at the previous time step wðiÞk�1 and the
likelihood of that particle given the measure. After a normalisation

of the weights is performed in a way that
PNS

i¼1
~wðiÞk ¼ 1, the posterior

PDF of the system state can be calculated (4). To limit sample
degeneracy, particles are resampled according to the actual poste-
rior distribution, as indicated in Eq. (5).

wðiÞk ¼ wðiÞk�1p zk xðiÞk

���� �
ð3Þ

p xk z1:kjð Þ �
XNs

i

~wðiÞk d xk � xðiÞk

� �
ð4Þ

xðiÞk � pðxk z1:kj Þ ð5Þ

The procedure described through Eqs. 3–5 is repeated each time
a new observation is provided by a measuring system.

Having applied the SIR algorithm to filter the state vector based
on diagnostic observations, the prognosis consists in projecting the
filtered particle population in time, up to the failure region that is
identified for the specific use case (this may be a critical crack
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