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a b s t r a c t

Experimental tests investigating Very-High-Cycle Fatigue (VHCF) properties of materials are commonly
performed with ultrasonic testing machines which allow for a significant reduction of testing time but
induce a relevant temperature increment in specimens. In particular, due to the large volume of material
(risk-volume) under test, Gaussian specimens, recently introduced for investigating size effects in VHCF,
are extremely prone to heat dissipation and to the consequent temperature increment. They were
originally designed by the Authors without considering the hysteretic damping and its effects on power
dissipation: however, in order to evaluate the feasibility of ultrasonic fatigue tests with Gaussian
specimens, hysteretic damping effects must be taken into account.

The paper proposes an analytical model that permits to evaluate the effects of the hysteretic damping
on the distribution of the power density and on the power dissipation in Gaussian specimens. The
theoretical model is verified through Finite Element Models and experimentally validated.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, Very-High-Cycle Fatigue (VHCF) behavior of
metallic materials has become a major point of interest for
researchers and industries. The needs of specific industrial fields
(aerospace, mechanical and energy industry) for structural compo-
nents with increasingly large fatigue lives, up to 1010 cycles (giga-
cycle fatigue), requested for a more detailed investigation on the
experimental properties of materials in the VHCF regime.

Gigacycle fatigue tests are commonly performed using reso-
nance testing machines [1,2] with a loading frequency of 20 kHz
(ultrasonic tests). Experimental results on high-strength steels
showed that, depending on the stress amplitude, failures may be
due to two different types of crack nucleation [3]. If the stress
amplitude is above the conventional fatigue limit, cracks nucleate
at the specimen surface (surface nucleation); if the stress ampli-
tude is below the conventional fatigue limit, cracks nucleate from
inclusions or internal defects (internal nucleation). Following the
experimental evidence, new phenomenological models were intro-
duced [4] for the description of the fatigue life. With the proposed

models, the random occurrence of superficial and internal failures
and the possible presence of a VHCF fatigue limit can be described
in a statistical framework.

Together with the introduction of new fatigue life models,
research on VHCF focused on the effect of different factors
influencing material response (e.g., stress ratio [5,6], load type
[7], environment conditions [8]). Recently, size-effect gained
significant attention. In particular, specimens with different
risk-volumes (specimen volume subjected to a stress amplitude
larger than the 90% of its maximum value) were investigated
[9–11]. Experimental results showed that, in case of high-strength
steels, the larger the risk-volume the smaller the fatigue strength.
As a consequence, for a conservative evaluation of VHCF properties,
VHCF tests should be run with specimens characterized by large
risk-volumes. However, a significant increment of the risk-volume
is not possible with common specimen shapes used for VHFC
tests (hourglass or dog-bone). With hourglass specimens, limited
risk-volumes (less than 200 mm3) can be tested and with
dog-bone specimens, moderate risk-volumes (less than 2000 mm3)
can be tested, due the non-uniform stress distribution along the
specimen part with constant cross section.

A further increment of the risk-volume was obtained by the
Authors [12] with the adoption of Gaussian specimens (Fig. 1). In
Gaussian specimens, the profile of the central specimen part
entails the Gaussian form, which provides an almost uniform stress
distribution and consequently allows for testing large risk-volumes
(up to 20,000 mm3). Gaussian specimens can be designed
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according to the analytical procedure described in [12]. Numerical
and experimental tests were carried out in [12,13] in order to com-
pare the risk-volumes attainable with Gaussian and dog-bone
specimens. The results confirmed that dog-bone specimens are
appropriate for moderate risk volumes, while the Gaussian shape
allows to design specimens with large risk-volumes.

The design of Gaussian specimens in [12] was carried out with-
out taking into account the hysteretic damping and its effect on
power dissipation. However, as the risk-volume increases, hys-
teretic damping effects cannot be neglected and must be taken into
account in order to assess the feasibility of ultrasonic tests with
Gaussian specimens.

The present paper proposes an analytical model for the predic-
tion of the stress distribution and of the power dissipation in
Gaussian specimens with hysteretic damping. The analytical model
is numerically verified through a Finite Element Analysis (FEA) by
considering Gaussian specimens with risk-volumes ranging from
1000 mm3 to 5200 mm3 and is experimentally validated by using
a Gaussian specimen with a 2000 mm3 risk-volume.

2. Gaussian specimen with hysteretic damping: Analytical
models

Internal dissipation in Gaussian specimens is modeled by con-
sidering a hysteretic damping model. The complex elastic modulus,
Ed (Ed ¼ Erð1þ igÞ), is introduced in order to take into account the
hysteretic damping: the real part of the elastic modulus, Er , takes
into account the elastic energy stored by the vibrating body, while
the imaginary part gEr , being g the loss factor, takes into account
the amount of energy dissipated due to internal dissipation. In
presence of hysteretic damping, a closed-form solution for the
stress distribution in the Gaussian specimen part cannot be deter-
mined. Therefore, the Gaussian profile is approximated with a
cosine function (Section 2.1), which allows for the computation
of the stress distribution along the longitudinal axis of the speci-
men (Section 2.2). Finally, the power density dissipated along the
longitudinal axis and the power dissipation are analytically deter-
mined (Section 2.3).

2.1. Approximation of the Gaussian profile

The Gaussian profile is obtained from the Webster’s equation
and by considering a uniform stress distribution in specimen
part 3 (Fig. 1) without considering hysteretic damping [12]. If
the hysteretic damping is introduced in the model, the elastic
modulus and, consequently, the wave number become complex
quantities. In case of complex wave number, the displacement
amplitude in the Gaussian specimen part cannot be determined
in a closed form. A closed form solution for the displacement
amplitude can be obtained by approximating the Gaussian pro-
file with a cosine function. The approximating cosine function
that describes the cross-section diameter, DðzÞ, can be obtained

by imposing the passage through points ðL1 þ L2; D2Þ and
ðL=2 ¼ L1 þ L2 þ L3=2; D3Þ as defined in Fig. 1. The approximating
cosine function is given by:

DðzÞ ¼ D3 cos a3 z� L
2

� �� �
; ð1Þ

where a3 ¼ 2 acos D2
D3

h i.
L3 is a geometrical parameter introduced in

order to guarantee the passage of the cosine approximating func-
tion through points ðL1 þ L2; D2Þ and ðL=2; D3Þ. The difference
between the exact profile and the approximated profile is limited.

2.2. Analytical stress distribution

In presence of hysteretic damping, the stress and the strain
amplitude are slightly out of phase. In the literature [14], the phase
delay is analytically modeled with a complex elastic modulus,
which yields to a complex wave number. A complex wave number,
in the Webster’s equation, finally yields to a complex displacement
amplitude. Therefore, the imaginary part of the displacement
amplitude allows for theoretically modeling the dissipated energy
in a hysteretic cycle.

Eq. (2) reports the complex displacement amplitude in
each specimen part (j ¼ 1; . . . ;5 in Fig. 1). Complex displace-
ment amplitude for a straight profile (specimen part 1 and
2) and complex displacement amplitude for a circular profile
approximated through an hyperbolic profile (specimen part 2
and 4) are determined according to [1]. The constant
coefficients involved in the equations are necessarily complex
quantities. The displacement amplitude in specimen part 3 is
obtained by solving the Webster’s equation for the cosine
profile (Eq. (1)).

u1½z1� ¼ ðA1r þ iA1iÞ cos½kz1� þ ðB1r þ iB1iÞ sin½kz1�; 0 6 z1 6 L1

u2½z2� ¼
ðA2rþiA2iÞ cos z2

ffiffiffiffiffiffiffiffiffiffi
k2�a2

2

p� �
þðB2rþiB2iÞ sin z2

ffiffiffiffiffiffiffiffiffiffi
k2�a2

2

p� �
cosh½a2ðz2�L2Þ�

; 0 6 z2 6 L2

u3½z3� ¼
ðA3rþiA3iÞ cos z3

ffiffiffiffiffiffiffiffiffiffi
k2þa2

3

p� �
þðB3rþiB3iÞ sin z3

ffiffiffiffiffiffiffiffiffiffi
k2þa2

3

p� �
cos½a3ðz3�

L3
2 Þ�

; 0 6 z3 6 L3

u4½z4� ¼
ðA4rþiA4iÞ cos z4

ffiffiffiffiffiffiffiffiffiffi
k2�a2

2

p� �
þðB4rþiB4iÞ sin z4

ffiffiffiffiffiffiffiffiffiffi
k2�a2

2

p� �
cosh½a2z4 �

; 0 6 z4 6 L4

u5½z5� ¼ ðA5r þ iA5iÞ cos½kz5� þ ðB5r þ iB5iÞ sin½kz5�; 0 6 z5 6 L5

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

;

ð2Þ

where uj½�� denotes the displacement amplitude in each specimen

part (j ¼ 1 . . . 5), k ¼ 2 � p � f 0

ffiffiffiffi
Ed
q

q.
, being f 0 the resonance frequency

and q the density, a2 ¼ acosh½N2�=L2, being N2 the ratio D1=D2 and
Ajr , Bjr , Aji and Bji (j ¼ 1; . . . ;5) are the 20 complex coefficients that
can be determined by imposing proper boundary conditions
(Appendix A).

At the free specimen surface (z ¼ 0), the real part of the dis-
placement amplitude is equal to U1 (Fig. 1), while the imaginary
part of the displacement amplitude and the real and imaginary
parts of the strain amplitude are equal to 0:

u1r½z1 ¼ 0� ¼ U1

u1i½z1 ¼ 0� ¼ 0

e1r½z1 ¼ 0� ¼ 0

e1i½z1 ¼ 0� ¼ 0

8>>>>><
>>>>>:

; ð3Þ

where ujr ½�� and uji½�� denote the real and imaginary parts of the dis-
placement amplitude in the jth specimen part and ejr ½�� and eji½��
denote the real and imaginary parts of the strain amplitude in the
jth specimen part. The other constant coefficients are determined
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Fig. 1. Typical Gaussian specimen.
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