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Full-discretization methods beyond the third order is not yet explored except for this work in which the
fourth and fifth order methods are presented. It is seen in earlier works that accuracy of milling stability
analysis using the full-discretization method rises from the first order method to the second order
method and continues to rise to the third order method. It is seen in this work that the rise in accuracy of
the full-discretization method with order continues to the proposed fourth order method where it
(accuracy) peaks before a decline to the proposed fifth order method.
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1. Introduction

Regenerative chatter is the most encountered self-excited vibra-
tion in machining operation [1,2]. It limits metal removal rate below
the machine’s capacity and hence reduces the productivity of the
machine. Regenerative chatter is the unstable and violent tool-
workpiece interaction that is caused by delay effects [3-6]. The
analytical treatment of regenerative chatter as pioneered by Tobias
and Fishwick [7] and Meritt [8] for turning process is the major in-
spiration of the wide-spread modern day analysis of cutting tool as a
spring-mass—damper system subjected to cutting force reaction from
a workpiece. Most work done in this direction seeks stability
boundaries or lobes that separate the cutting parameter space of
spindle speed and depth of cut into stable and unstable domains
such that the machinist can make the most of lobeing effect by
choosing the parameter combinations that give the maximum ma-
terial removal rate. This is the out-of-process strategy of regenerative
chatter control that is so-called because it taps the best of the system
dynamics without modifying the dynamical parameters of the sys-
tem [9]. The success of this approach depends on near accurate de-
termination of modal parameters of the spring—mass—damper cut-
ting tool model and the cutting coefficient of the adopted cutting
force model. These modal parameters are normally estimated from
experimental analysis that includes both stiffness and impact testing
[2,10-14]. Needed cutting coefficients are normally estimated from
experimental cutting force analysis that involves measuring the
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forces with dynamometers. Two types of experimental cutting force
analysis are distinguished: mechanics of cutting approach [14,15] and
mechanistic approach [10,16-18]. Numerical finite element approach
to predicting machining cutting force and cutting coefficient is
evolving over the past decade. This method utilizes slip line field
theory [19,20]. The aspects of modeling and stability analysis of the
out-of-process chatter control for turning process is relatively easy
because of the fact that turning process is governed by autonomous
delay differential equation (DDE) which can be completely analyti-
cally handled using the method of D-subdivision [21-24]. The au-
tonomous nature of the DDE is due to time-invariance of the sta-
tionary chip thickness. The dynamics of regenerative chatter in mil-
ling process is much more complicated by multiplicity of cutting
edges and periodically varying stationary chip thickness. Complete
analytical treatment of milling process is not possible as in turning
process. Just a few hybrid methods that are both analytical and nu-
merical in nature are used in the aspect of stability analysis of the
out-of-process chatter control for milling process. Some of the hybrid
methods are the zeroth order approximation method [25,26], tem-
poral finite element analysis (TFEA) [27-29], the semi-discretization
method [28,30,31], the Lambert function based method [32,33], the
full-discretization method [34-40], a method based on linear ap-
proximation of acceleration [41] and complete discretization [42].

2. Detailed review of the full-discretization method

The semi-discretization method [30] was earlier available for
stability analysis of milling process than the full-discretization
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method [34]. The basis of their difference hinges on the extent of
discretization implemented on the basic state space form of the
governing DDE. For illustrative reason, we consider a basic scalar
DDE model for 1 DOF milling process utilized in the two pio-
neering works

= %Z(t -1)

Z(t) + 2Ewnz(t) + (wnz +—2 1)

The adjective “basic” is included to mean a milling model
without the effects of some complicating phenomena like process
damping, tool run-out, spindle speed variation, mode coupling,
non-linearity, tools with non-uniform pitch etc. State space ana-
lysis of stability of Eq. (1) using the semi-discretization method as
presented in [30] required transformation to the form

&(t) = A(t)&(t) - B(t)&(t - 7) (2)
where the periodic matrices A(t) and B(t) are
0 1 0 0
A(t) = 5 wh(t) ,  B(t)=| wh(t)
_a)n - T —26&),1 —T 0 (33)

and the state vector &(t) is

3 z(t)
0= {Z(t)} (3b)

The semi-discretization of Eq. (2) was limited to the delayed
term. This resulted in a series of state space ODEs paving the way
for construction of system monodromy operator from which sta-
bility calculated. Versatility of the use of the semi-discretization
method in analysis of more advanced milling models that include
special effects like process damping [43-45], tool run-out [46],
spindle speed variation [47,48], non-linearity [45], tools with non-
uniform pitch [49,50] is note-worthy. By subtracting the matrix
0

B(t) from matrix A(t) a constant matrix A = )
—wp —2&wn

] results
allowing Eq. (2) to become
&(t) = A&(t) + B(6)&(t) — B(D&E(t - 7) (4)

The milling model having the form of Eq. (4) was given ex-
tended discretization in the pioneering full-discretization method
[34] to include the delayed term B(t)&(t — z) and current term
B(t)&(t). The principal period which is same as the discrete delay =
is discretized into equal time intervals At. The discrete interval is
given as At=rt/k=ti;1—t; where i=0, 1, 2, ..., (k-1),
ti = itk = iAt = i(tiz1 — t;). The discretization integer k is called the
approximation parameter. Eq. (4) is represented as

y(t) = Ay(t) + B()y(t) — B(t)y(t - 7) (5)

in the discrete interval [t;, ti;1] and solved in [34] using direct
integration scheme to give

ti+1

Vor=ehdy + [ eNIBY(s) - Blys - lds o

As commented in [34], the works [51,52]| were inspirational to
the advent of the full-discretization method in milling stability
analysis. Searching the keyword “full-discretization method” on
Science direct and Google shows that the name “full-discretization
method” has selectively been used to refer to methods in which
the integration scheme is solved after the terms B(s)y(s) and
B(s)y(s — 7) are replaced with Lagrange [34,36], Newton [38] or
Hermite [39] interpolation polynomial. The view in this work is
that any method based on Egs. (5) and (6) belongs to the full-
discretization method irrespective of how the integration scheme

is handled. The reason for this view being that the name stems
from the method and extent of discretization and not on the
method of solution. This means that other methods which are not
explicitly called “full-discretization method” but based on Egs. (4)-
(6) are full-discretization methods. For example the method in
[37,53] in which the integration scheme in Eq. (6) is handled by
the method of numerical integration belongs to the full-dis-
cretization method. Also based on this criterion, the spectral
method [54] for milling stability analysis belongs to the full-dis-
cretization method. The method in the work [55] called “improved
semi-discretization method” in which milling process with spindle
speed variation is analyzed belongs to the Full-discretization
method. The methods in [40] which utilize least squares approx-
imation of the terms B(s)y(s) and B(s)y(s — r) belongs to the full-
discretization method. It has been found that the full-discretiza-
tion methods that are based on interpolation theory and those that
are based on approximation theory (least squares method) are of
same accuracy [40]. The latter are superior for producing mono-
dromy matrices that are generated with less number of numerical
calculations thus saving computational time. This is the reason for
which proposals for higher order full-discretization methods in
this work will be based on least squares method. Accuracy of the
full-discretization method improves with increase of order of in-
terpolation/approximation of state term from one to three
[36,38,40]. Against the backdrop of the work [56] the trend of
increasing accuracy with rise in order of interpolation/approx-
imation from one to three is not guaranteed beyond the third or-
der theory. Even in the face of this curiosity no effort is yet seen to
go beyond third order interpolation/approximation theory in the
full-discretization method probably due to heavy analytical in-
volvement. Fourth and fifth order cases of full-discretization
method are considered here in order for the first time settle this
curiosity of what becomes of accuracy of the full-discretization
method beyond third order theory. This as stated earlier is done
from the perspective of approximation theory (least squares ap-
proximation) where it should be understood that results pertain-
ing to accuracy are also applicable if interpolation theory were
used.

3. Mathematical model of the 2DOF milling process

The matrix delay differential equation governing the re-
generative motion of a 2DOF milling tool is

Z(t) + M-1Cz(t) + M-Kz(t) = M-H[z(t) - z(t - 7)] (7)

where z(t) = {zx(t) Zy(t) }T is the vector of regenerative motion in
the feed and feed-normal directions respectively and

mx O cx O kx 0O ~Whxx(t) —Whyy(t)
M= , C= . K= . H= .
0 my 0 cy 0 ky —Whyx(t) —whyy(t) (8)
The coupling in the model which stems from the two dimen-
sional feed of the force law is contained in the z-periodic matrix H

because of presence of non-zero off diagonal elements. The non-
linear cutting force law for the 2DOF system is used in the form

Fe(€) = Gow| fy sin 05(8) + £y cos 0;(0) | (9a)

Fnj(t) = XFy(t) (9b)

where w is depth of cut, G; and G, are the tangential and normal
cutting coefficients associated with the workpiece material prop-
erties and tool shape, X is the ratio Gy/C: and f,, and f,, are the
respective feeds in the feed and feed-normal directions under
regenerative effects. A modeling procedure for 2DOF milling
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