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a b s t r a c t

Machine tool structure has a strong influence on the dynamic properties of the tool. The change of a
machine tool's structure will cause variations in the dynamic parameters of the entire tool, such as its
natural frequency, which will result in changes to the stability of the tool and poor machining quality.
Thus, a study on the variations of machine tool dynamics is essential for high performance cutting. In this
paper, using the mass change method, a basic mathematical model for predicting the natural frequency
change resulting from structural change was presented followed by an experimental validation of the
model. The mathematical model indicates that structural change will lead to the outward variation of the
natural frequency, which is essentially related to the change of the squared mode shape values between
the original position and the modified position of the moving component. With this natural frequency
change rate prediction model, the natural frequency in the case of structural change can be easily pre-
dicted. The predicted results indicate that the positional change of different moving components has
differing influences on the natural frequency of the machine tool.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the machining procedure, machining quality and pro-
ductivity depend largely on the dynamics of the machine tool.
Research investigating the dynamic properties of the tool center
point (TCP) is especially important for the design and installation
of the machine tool as well as the machining procedure. Con-
siderable work has been undertaken concerning the dynamic
properties of the whole machine tool system expressed by means
of the frequency response function (FRF) at the tool center point. A
common method is to predict chatter just from the dynamic
properties of the spindle and tool system [1]. Many researchers
have predicted the dynamic parameters of the spindle nose or the
tool [2–4]. With the development of high performance cutting,

machining the parts in the shortest time while respecting the
physical constraints of the process such as torque, power, vibra-
tions, tool wear and failure, surface quality, and tolerance, is de-
manded. Therefore, good dynamic behavior of the machine tool
during high performance cutting is required. In general, the dy-
namic behavior of a machine tool can be greatly influenced by its
structure, especially for heavy machine tools. Sulitka et al. [1] in-
vestigated the influence of the machine frame on the dynamic
properties of the spindle and tool, and they demonstrated the
importance of the machine tool structure on the dynamic prop-
erties evaluated at the tool tip. Kolar et al. [5] performed an ex-
perimental analysis of the machine frame impact on the dynamic
properties evaluated at the spindle nose. The results show that the
natural frequencies of the spindle nose were greatly influenced by
the machine tool structure. Current studies have proven that the
structure of a machine tool contributes significantly to the dy-
namic stiffness of the spindle nose; therefore, analysis of the dy-
namic properties of the entire machine tool structure is warranted.

As we know, a complete machine tool system is very complex,
and some components, such as the headstock and worktable in
most machine tools, do not stay in a fixed location during the
machining process, and the dynamic properties always vary with
the change in the machine tool structure [6]. Mousseigne et al. [7]
studied the influence of different dynamic parameter shifts on the
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stability lobe curves and they found that the variation of the
natural frequency has the greatest influence on the stability lobe
curves, so that a precise estimation of the natural frequencies is
well related to the certainty of the stability lobe curves. Because
the position-dependent natural frequencies result in varying sta-
bility of machine tool [8], which has a great influence on the
machine tool's productivity and the quality of the machined parts,
it is necessary to predict the position-dependent natural fre-
quencies of the machine tool.

The primary goals of the research in this paper are to propose a
basic theory of natural frequency change rate prediction in the
case of structural change, to validate this theory experimentally
and to use it to predict the structural natural frequencies of a
machine tool in the case of structural change. In the experimental
validation process, the active excitation modal analysis (AEMA) [9]
method was applied.

This paper is organized as follows: Section 2 proposes the basic
mathematical models for calculating the natural frequency change
rate both in the case of mass change and in the case of structural
change. Then, both of these basic mathematical models are ver-
ified using simulation methods. Section 3 introduces the experi-
mental verification of the mathematical model for calculating the
natural frequency change rate in the case of structural change, and
then the structural natural frequencies of a machine tool are
predicted. In the experimental verification process, a newly pro-
posed active excitation modal analysis method was applied. Fi-
nally, the work is summarized in Section 4.

2. Theoretical background

The basic theory of natural frequency change rate prediction in
the case of structural change is based on the mass change method
[10]. In this section, the basic theory of natural frequency change
rate prediction in the case of mass change is proposed in Section
2.1. Based on the theory in Section 2.1, the basic theory of natural
frequency change rate prediction in the case of structural change is
presented in Section 2.2.

2.1. The basic theory of natural frequency change rate prediction in
the case of mass change

2.1.1. The basic mathematical model of natural frequency change
rate prediction in the case of mass change

In general, the structure of a whole machine tool system con-
sists of fixed structure and moving components. In the case where
the mass of the moving component is much less than that of the
fixed structure, the dynamic stiffness of the moving component
will be much larger than that of the fixed structure. Hence, the
moving components can be regarded as rigid bodies, and they will
vibrate with the vibration of the fixed structure. It can be thereby
regarded that the moving component is attached onto the fixed
structure [11], as is shown in Fig. 1.

In the case of no damping or proportional damping, the

differential equation of motion of the fixed structure subjected to a
force F{ } can be expressed as follows:

M x C x K x F[ ]{ } { } { } { } (1)¨ + ̇ + =

where M[ ], C[ ] and K[ ] are the mass, damping and stiffness matrices
of the fixed structure; x{ }¨ , x{ }̇, and x{ } are time functions organized
in column vectors that characterize the evolution of the accel-
eration, velocity and displacement, respectively; and F{ } is a col-
umn force vector applied to the structure. The eigenvalue equation
corresponding to Eq. (1) is given by

M K[ ]{ } [ ]{ } (2)r r r0 0
2

0ϕ ω ϕ=

where { }r0ϕ and r0ω are the mode shape and the natural frequency
of mode r of the fixed structure, respectively, and subscript ‘0’
indicates the fixed structure.

When attaching a component on the fixed structure, such as
installing a worktable or a headstock on a machine tool structure,
there will be a variation in the mass distribution, as is shown in
Fig. 1b.

As is shown above, the differential equation of motion of the
modified structure can be expressed in the following form:

M m x C x K x F([ ] [ ]){ } { } { } { } (3)i+ Δ ¨ + ̇ + =

where m[ ]iΔ is the mass matrix caused by the attached compo-
nent, and
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in which mi is equal to the m value, i.e., m mi = . Subscript ‘i’ de-
notes the #i degree of freedom (DOF) of the fixed structure.
Therefore, matrix M m([ ] [ ])i+ Δ reflects that the component of
which the mass is m attaches to the fixed structure on the position
of DOF #i. Similarly, the eigenvalue equation corresponding to Eq.
(3) can be written in the following form:

M m K([ ] [ ]){ } [ ]{ } (4)i i r ir i r
2ϕ ω ϕ+ Δ =

where { }i rϕ and irω are the mode shape and the natural frequency
of mode r of the modified structure, respectively, when the com-
ponent is attached to DOF #i. Subtracting Eqs. (2) and (4), the
following expression can be obtained:

( ) ( )M m K[ ] { } { } [ ]{ } [ ] { } { } (5)i r ir r r i i r ir i r r
2

0 0
2 2

0ϕ ω ϕ ω ϕ ω ϕ ϕ− + Δ = −

Assuming that the mass of the component is so small when
compared to that of the fixed structure that the mode shapes do
not change significantly, i.e.,{ } { } { }r i r r0ϕ ϕ ϕ≈ ≈ , Eq. (5) can be
written in the following form:

M m M[ ]{ } [ ]{ } [ ]{ } (6)r ir i r ir r r
2 2

0
2ϕ ω ϕ ω ϕ ω+ Δ =

Multiplying Eq. (6) by the transport of the modal shape vector of

Fig. 1. (a) Fixed structure and (b) modified structure, with a component attached onto the fixed structure.
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