## **Accepted Manuscript**

Investigation of non-covalent and hydrogen bonding interactions on the formation of crystalline networks and supramolecular synthons of a series of  $\alpha$ -aminophosphonates: Crystallography and DFT studies

Masoud Mirzaei, Hossein Eshghi, Fateme Akhlaghi Bagherjeri, Mahdi Mirzaei, Abolghasem Farhadipour

PII: S0022-2860(18)30297-7

DOI: 10.1016/j.molstruc.2018.03.014

Reference: MOLSTR 24953

To appear in: Journal of Molecular Structure

Received Date: 19 January 2018

Revised Date: 4 March 2018 Accepted Date: 6 March 2018

Please cite this article as: M. Mirzaei, H. Eshghi, F.A. Bagherjeri, M. Mirzaei, A. Farhadipour, Investigation of non-covalent and hydrogen bonding interactions on the formation of crystalline networks and supramolecular synthons of a series of α-aminophosphonates: Crystallography and DFT studies, *Journal of Molecular Structure* (2018), doi: 10.1016/j.molstruc.2018.03.014.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.



ACCEPTED MANUSCRIPT

Investigation of non-covalent and hydrogen bonding interactions on the

formation of crystalline networks and supramolecular synthons of a series

of α-aminophosphonates: Crystallography and DFT studies

Masoud Mirzaei\*, Hossein Eshghi, Fateme Akhlaghi Bagherjeri, Mahdi Mirzaei,

Abolghasem Farhadipour

Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad,

Iran

E-mail: mirzaeesh@um.ac.ir

**ABSTRACT** 

α-Aminophosphonates have been rarely explored in the field of crystal engineering. These

organic molecules are capable of forming reliable and reproducible supramolecular synthons

through non-covalent interactions that can be employed for designing high dimensional

supramolecular architectures. Here, we systematically study the influence of conventional

and unconventional hydrogen bonding interactions on the formation of these synthons and

stability of the crystal packing. The theoretical studies were employed to further confirm the

presence of these synthons by comparing the stabilization energies of the dimers and

monomers. The dependence of the stability of NH...O hydrogen bonds to the aromatic

substituents were investigated using NBO analysis. The most stable compound was

determined by comparing the HOMO-LUMO energy gap of all compounds and compared

with NBO analysis.

## Download English Version:

## https://daneshyari.com/en/article/7807480

Download Persian Version:

https://daneshyari.com/article/7807480

<u>Daneshyari.com</u>