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a b s t r a c t

The measuring of dynamic magnetic susceptibility by nuclear magnetic resonance is used for revealing
information about the internal structure of various magnetoactive composites. The response of such
material on the applied external static and time-varying magnetic fields encodes intrinsic dynamic
correlations and depends on links between macroscopic effective susceptibility and structure on the
microscopic scale. In the current work we carried out computational analysis of the frequency dependent
dynamic magnetic susceptibility and demonstrated its dependence on the microscopic architectural
elements while also considering Euclidean dimensionality. The proposed numerical method is efficient in
the simulation of nuclear magnetic resonance experiments in two- and three-dimensional random
magnetic media by choosing and modeling the influence of the concentration of components and in-
ternal hierarchical characteristics of physical parameters.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Nuclear magnetic resonance (NMR) examination of complex,
porous and heterogeneous materials yields many opportunities for
assessing the ways in which the underlying structure influences
observed change in magnetization through the physical processes
of relaxation and dispersion [1,2]. NMR provides the basis for
magnetic resonance imaging (MRI) and, as a consequence, is a
powerful tool for medical applications, where it allows the reso-
lution of abnormal growth, tissue configurations and reactions in
the whole body [3,4].

NMR is fundamentally described by the Bloch equation: a set of
linear, first-order ordinary differential equations [5]. This model is
adequate for describing the evolution of magnetization in simple
liquids and gels with a relatively homogeneous composition.
However, characterizing highly random multicomponent structure
requires a structural model with quantified parameters that pre-
dicts the result of the experiment by comparing the measurement
to the prediction [6e8]. Interpreting experimental results involves
identifying which model structural parameters most strongly affect
magnetization while neglecting inessential remaining parameters.

Here we demonstrate that such a parameter as structural ir-
regularity of the components of medium plays a key role in the
description of random composites, which appears incredibly
complex at the mesoscopic scales typically intermediating between
the microscopic molecular dimensions, where material properties
such as local magnetization originate, and the macroscopic sample
dimensions [9e11].

In a previous study, we used a coarse-graining multi-scale
model of random composites, with an expanded theoretical
framework on different local constitutive laws to analyze disper-
sion of fully relaxing composites observed in diffusion, biorheology
and elastography [12e14]. Our current work provides further
enhancement of earlier proposed Euclidean two-dimensional (2D)
and three-dimensional (3D) models of relaxivity for the problems
of resonating magnetoactive composites enabling a link between
the macroscopical effective properties of susceptibility to constants
of susceptibility and random geometry of components of medium
on the mesoscale.

The concept of multi-scale coarse-graining is adapted from
statistical physics of critical phenomena [15e17] and, in our
context, it implies the global hierarchical similarity between
different structurally complex specimens that appears at interme-
diate distances whenever specimens are sufficiently coarse-
grained, such that local differences between statistical re-
alizations of disorder become inessential.

Our paper is arranged as follows. The Theory section gives a brief
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description of the function and subtleties of a multi-scale algorithm
seen from the design of the hierarchical Bloch equation viewpoint.
The section Results of numerical simulations explains the parameters
we used, details of the calculation, and describes the outcome of
our algorithm. We round off the paper with a Discussion and
conclusion of our work.

2. Theory

2.1. A hierarchical model of binary random magnetic composite: 2D
and 3D cases

Binary composite can be modelled as a two-phased random
structure, which can be mapped onto 2D square and 3D simple
cubic lattices and investigated by percolation theory methods
[15,18]. Assume that each bond of the lattice is colored “black”with
probability p, and “white” with probability q, representing com-
ponents (or phases) of composite and satisfying the condition:�

pþ q ¼ 1
~Dðp; qÞ : 0 � p � 1;0 � q � 1 (1)

where ~Dðp; qÞ is a probability domain.
The physical properties of such material can be described by the

generalized binary local probability density function:

r
�
cðkmÞ

�
¼ pd

�
cðkmÞ � cð1Þ

�
þ qd
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cðkmÞ � cð2Þ

�
; (2)

where dðxÞ is a Dirac delta function. In Eq. (2) every bond is
bounded with the closest neighbour nodes ðkmÞ in the lattices of N
inner andNG contact boundary G nodes. The bond can either belong
to phase (1) or (2) characterized by parameters of susceptibility cð1Þ

and cð2Þ correspondingly.
Wemodel global (or effective) properties of a magnetic material

with randomly distributed local properties according to a real space
renormalization group method [19,20]. The main idea of this
method consists of replacing a lattice of size l of iterative level n and
density function rnðcðkmÞÞ into a lattice of size bl on nþ 1 level with
density function rnþ1ðcðk0m0ÞÞ ¼ TðrnðcðkmÞÞÞ and rescaling factor b.
To this end, each realization of Eq. (2) should be renormalized to a
rudimentary unit of the transformed lattices. Recursive repetition
results in a self-similar structure that hierarchically repeats the
connectedness of the original bonds. If we consider only the hori-
zontal or vertical spanning of the renormalization element of the
lattice, the connectivity in component (1) can be determined only
by five bonds in 2D (Fig. 1a) and twelve bonds in 3D (Fig. 1b). The
procedure of renormalization is illustrated in Fig. 1a,b. On the left-
hand part of Fig. 1a,b we show a section of the original lattice while
on the right the same section is shown after renormalization. The
iterative transformation, T , of generalized probability density
function of Eq. (2) is defined as [21e23].
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where Ej2D ¼ fEð1Þ∪Eð2Þg and Ej3D ¼ fEð1Þ∪Eð2Þg5fEð1Þ∪Eð2Þg5
fEð3Þ∪Eð4Þg5fEð3Þ∪Eð4Þg .

S is a surface covering N and NG nodes, and S\SG is a surface
where nodes NG are excluded. hFðfcðkmÞ;ngÞi is the effective

susceptibility function of a lattice, delineated via a rudimentary
element bounded by nodes ðkmÞ, which was averaged over all
configurations E in a way to preserve the invariant form of Eq. (2)
for every nth scale of recursive building of the hierarchical lattice.
In the 2D case E, consisting of 25 elements, can be easily repre-
sented as unification, ∪, of connected, Eð1Þ, and disconnected, Eð2Þ,
clusters (Fig. 1a). The set E in the 3D case can be calculated as a
direct product, 5, of elements of sets Eð1Þ, Eð2Þ, and possible con-
figurations Eð3Þ and Eð4Þ for a single bond (Fig. 1b). Thus renorm-
alizing lattice in the 3D case is considered as a combination of two
2D lattices connected through two bonds. In 3D the number of el-
ements in a set E is equal 212.

The transformation of p in Eq. (3) corresponds to connectedness
function, RðpÞ, and can be expressed by the polynomial equations

RðpÞj2D ¼ p5 þ 5p4ð1� pÞ þ 8p3ð1� pÞ2 þ 2p2ð1� pÞ3; (4)

and

RðpÞj3D ¼ p12 þ 12p11ð1� pÞ þ 66p10ð1� pÞ2 þ 220p9ð1� pÞ3

þ 493p8ð1� pÞ4 þ 776p7ð1� pÞ5 þ 856p6ð1� pÞ6

þ 616p5ð1� pÞ7 þ 238p4ð1� pÞ8 þ 48p3ð1� pÞ9

þ 4p2ð1� pÞ10:
(5)

Thus the iterative recursion of pn in Eq. (3) is defined as

pnþ1 ¼ RðpnÞ; (6)

and then Eq. (3) can be written as
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where the function of equivalent susceptibility is separated into
components (1) and (2) depending on the connectedness of bonds
in set E.

The roots p* of Eqs.(4) and (5) in the physical meaningful range
of p*2½0;1� are p*j2D ¼ f0;0:5;1g and p*j3D ¼ f0;0:2085;1g. The
first and third roots represent a lattice fully occupied by phases (2)
or (1), respectively. The second root is unstable, i.e. a small
perturbation in the probability p leads to stable homogeneous
components [21]. The number of iterations for building a hierar-
chical lattice is defined by the constraint jpn � pnþ1j � ε, where
ε>0 is an infinitely small number. Due to this condition, the two
components of a composite are indistinguishable after multi-scale
hierarchical averaging:�
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n/∞
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���
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¼ 0; lim
n/∞
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���
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���
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���
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leading to a convergence of binary properties to solitary

lim
n/∞
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����
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�
; (9)

with effective properties corresponding to component (1) or (2)
depending on selection of initial probability p0 at the first iteration
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