Journal of Molecular Structure 1127 (2017) 777-783

Contents lists available at ScienceDirect

Journal of Molecular Structure

journal homepage: http://www.elsevier.com/locate/molstruc

Preparation and photoluminescence properties of $MMoO_4$ (M = Cu, Ni, Zn) nano-particles synthesized via electrolysis

Wei Zhang ^a, Jiajia Yin ^a, Fanqi Min ^a, Lili Jia ^a, Daoming Zhang ^a, Quansheng Zhang ^{a, *}, Jingying Xie ^{b, **}

^a School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China ^b Shanghai Institute of Space Power Sources, Shanghai 200245, China

ARTICLE INFO

Article history: Received 1 February 2016 Received in revised form 6 August 2016 Accepted 9 August 2016 Available online 11 August 2016

Keywords: Sacrificial anode Cation exchange membrane electrolytic cell Electrochemical synthesis Molybdate nano-particles Photoluminescence property

ABSTRACT

Metal molybdate (MMoO₄, M = Cu, Ni, Zn) nano-particles were successfully synthesized by electrochemical method in a cation exchange membrane electrolytic cell with Na_2MoO_4 solution as anolyte, diluted hydrochloric acid (HCl) as catholyte, metal (Cu, Ni, Zn) as anode and stainless steel as cathode. The composition, morphology, structure, microstructure and photoluminescence property of the synthesized MMoO₄ were investigated and characterized. The results show that the photoluminescence spectra of electrolytic synthesized MMoO₄ have fine structures, which is markedly different from the existing research.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Metal molybdate is a family of inorganic functional materials as important as metal tungstate [1,2], which has been widely used in many aspects, such as photoluminescence devices, microwave components, optical fibers, humidity sensors, magnetic devices, photocatalysts, electrocatalysts, supercapacitor materials, lithium batteries, fuel cells, solar energy conversion, corrosion protection, and so on [3–18]. As reported in typical examples, copper molybdate (CuMoO₄) was studied as photocatalyst for the oxidation of methane to methanol [19], that depended on the O $2p \rightarrow Cu 3d$ excitation of CuMoO₄ under visible light. Shale/natural gas with methane as the primary component could be converted into shippable liquid methanol at the catalysis of CuMoO₄, which is a comparable technology to the technologies converting methane into liquid aromatic hydrocarbons [20]. NiMoO₄ was studied as supercapacitor material in recent research [21–23]. Phosphor properties of doped ZnMoO₄ were studied and used for light

** Corresponding author.

emitted diode application [24].

Several methods have been applied to synthesize metal molybdates in reports, including hydrothermal method, sol-gel method, microwave-assisted synthesis method, molten salt method, coprecipitation method, microemulsion-based synthesis, sonochemical method, polymerized precursor method, solid state reaction method and electrochemical synthesis [25-35]. Precursors for MMoO₄ synthesis are adapted to the adopted methods. To obtain CuMoO₄, soluble molybdates such as Na₂MoO₄, (NH₄)₆Mo₇O₂₄·24H₂O and soluble copper salts such as CuCl₂, CuSO₄·5H₂O were used in hydrothermal method [36-38] and solgel method [39]. MoO₃ as the molybdenum source and Cu or CuO as the copper source were used in the solid-state reaction [40]. To prepare NiMoO₄, soluble nickel salts such as Ni(NO₃)₂·6H₂O and $Ni(CH_3COO)_2 \cdot 4H_2O$, were used as the nickel source [41]. $Zn(CH_3COO)_2 \cdot 2H_2O$ was used as the zinc source for the synthesis of $ZnMoO_4[42]$.

In this paper, an electrochemical method was introduced to synthesize $MMoO_4$ (M = Cu, Ni, Zn) nano-particles. A cation exchange membrane electrolytic cell was established as illustrated in Scheme 1; pure metal (Cu, Ni, Zn) was used as the anode, stainless steel mesh as the cathode, and sodium molybdate solution as the anolyte, diluted chloride acid as the catholyte. A constant-voltage applied on the electrolytic cell, the cation (Na⁺) in the anolyte

^{*} Corresponding author.

E-mail addresses: zhangquansheng@sit.edu.cn (Q. Zhang), jyxie@mail.sim.ac.cn (J. Xie).

Scheme 1. Electrolytic cell with cation exchange membrane for electrochemical synthesis of $MMoO_4$ (M = Cu, Ni, Zn).

will move through the cation exchange membrane into the catholyte (HCl). The metal anode was dissolved into the anolyte as metal ion, which combined with MOQ_4^- in the anolyte to form the metal molybdate $MMOQ_4$. Pure copper anode was used for CuMOQ₄ synthesis, pure nickel anode for NiMoO₄ synthesis, and pure zinc anode for ZnMoO₄ synthesis.

2. Experimental

2.1. $MMoO_4$ (M = Cu, Ni, Zn) synthesis

 $Na_2MoO_4 \cdot 2H_2O$ and HCl used in the present experiment were of analytical purity and as received without further purification. Copper, nickel and zinc foil (in 99.99% purity) were washed with acetone (C_3H_6O) and anhydrous ethanol (CH_3CH_2OH) before used as the anode. 100 mL 0.1 mol/L Na_2MoO_4 aqueous solution was used as the anolyte, and 100 mL 0.1 mol/L HCl as the catholyte. A 2 × 4 cm metal foil as the anode, stainless steel mesh as the cathode, and a DuPontTMNafion[®] PFSA NRE-212 membrane as the

Fig. 1. XRD (a) and EDS (b) patterns of CuMoO₄; XRD (c) and EDS (d) patterns of NiMoO₄; XRD (e) and EDS (f) patterns of ZnMoO₄.

Download English Version:

https://daneshyari.com/en/article/7809220

Download Persian Version:

https://daneshyari.com/article/7809220

Daneshyari.com