Accepted Manuscript

Physical, Structural and Optical Characterizations of Borate Modified Bismuth-Silicate-Tellurite Glasses

Neelam Berwal, R.S. Kundu, Kirti Nanda, R. Punia, N. Kishore

PII:	S0022-2860(15)00412-3
DOI:	http://dx.doi.org/10.1016/j.molstruc.2015.05.011
Reference:	MOLSTR 21512
To appear in:	Journal of Molecular Structure
Received Date:	27 February 2015
Revised Date:	10 April 2015
Accepted Date:	5 May 2015

Please cite this article as: N. Berwal, R.S. Kundu, K. Nanda, R. Punia, N. Kishore, Physical, Structural and Optical Characterizations of Borate Modified Bismuth-Silicate-Tellurite Glasses, *Journal of Molecular Structure* (2015), doi: http://dx.doi.org/10.1016/j.molstruc.2015.05.011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Physical, Structural and Optical Characterizations of Borate Modified Bismuth-Silicate-Tellurite Glasses

Neelam Berwal^a, R. S. Kundu^a, Kirti Nanda^a, R. Punia^b* and N. Kishore^a

^aDepartment of Applied Physics, Guru Jambheshwar University of Science & Technology, Hisar-125001

^bDepartment of Physics, Indira Gandhi University, Meerpur, Rewari-123401

*Corresponding author's e-mail: <u>rajeshpoonia13@gmail.com</u>

Abstract

Quaternary bismuthate glasses with compositions xB_2O_3 -(80-x) Bi_2O_3 -15SiO₂-5TeO₂ have been prepared by melt-quench technique. X-ray diffraction studies were performed to ascertain the amorphous nature of samples. The density, molar volume and crystalline volume decrease with increase in B_2O_3 content whereas the glass transition temperature shows the reverse trend. The Raman and FTIR spectra of the studied glasses indicate that B_2O_3 has been found to exist in the form of BO₃ trigonal and BO₄ tetrahedral structural units and vibrations corresponding to these structural units increase with increase in B_2O_3 content. SiO₂ is present in the form of SiO₄ tetrahedral structural units and TeO₂ in the form of TeO₃ structural units. Bismuth plays the role of network modifier [BiO₆ octahedra] as well as network former [BiO₃ pyramids] for all the glass compositions. The optical band gap energy has been calculated from the fitting of both Mott and Davis's model and Hydrogenic excitonic model with the experimentally observed absorption spectra. A good fitting of experimental data with HEM indicates the excitonic formation in the studies glass system. The values of optical band gap Download English Version:

https://daneshyari.com/en/article/7809360

Download Persian Version:

https://daneshyari.com/article/7809360

Daneshyari.com