Journal of Molecular Structure 1083 (2015) 364-373

Contents lists available at ScienceDirect

Journal of Molecular Structure

journal homepage: www.elsevier.com/locate/molstruc

Hydrogen-bonded complexes of acetylene and acetonitrile: A matrix isolation infrared and computational study

R. Gopi, N. Ramanathan, K. Sundararajan*

Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, India

HIGHLIGHTS

• Experimental evidence for the formation of 1:1 CH...N complex of C₂H₂—CH₃CN.

• The experimental and calculated vibrational wavenumbers agreed well with each other

• Higher 1:2 C₂H₂--(CH₃CN)₂ and 2:1 (C₂H₂)₂--CH₃CN complexes were also observed.

• The nature of interaction in the complexes was characterized by AIM and NBO analysis.

ARTICLE INFO

Article history: Received 17 September 2014 Received in revised form 28 October 2014 Accepted 10 November 2014 Available online 15 November 2014

Keywords: H-bonded complexes Acetylene Acetonitrile Matrix isolation Infrared Ab initio calculations

ABSTRACT

Hydrogen-bonded complexes of acetylene (C₂H₂) and acetonitrile (CH₃CN) have been investigated using matrix isolation infrared spectroscopy and *ab initio* computations. The complexes were trapped in both solid argon and N₂ matrices. The structure of the complexes and the energies were computed at the B3LYP and MP2 levels of theory using a 6-311++G(d,p) basis set and also at B3LYP/aug-cc-pVDZ level. Our computations indicated one minimum corresponding to the 1:1 C_2H_2 -CH₃CN complex, with C-H N interaction, where C₂H₂ is the proton donor. Experimentally, we observed the 1:1 C₂H₂-CH₃CN complex in Ar and N₂ matrices, which was evidenced by the shifts in the vibrational wavenumbers of the modes involving the C_2H_2 and CH_3CN sub-molecules. Computations were also performed to study the higher complexes of C₂H₂ and CH₃CN. One minimum was found for the 1:2 C₂H₂—CH₃CN complex and two minima for the 2:1 C_2H_2 —CH₃CN complexes, at all levels of theory. Experimentally we observed features corresponding to the 1:2 C₂H₂—CH₃CN complexes in an Ar and N₂ matrices. The computed vibrational wavenumbers of C_2H_2 —CH₃CN complexes at B3LYP/6-311++G(d,p) level correlate well with the experimental wavenumbers. Atoms in Molecules (AIM) analysis was performed to understand the nature of interaction in the complexes. Natural Bond Orbital (NBO) analysis was performed to understand the effect of charge-transfer hyperconjugative interactions towards the stability of different C_2H_2 —CH₃CN complexes.

© 2014 Elsevier B.V. All rights reserved.

Introduction

Studies of hydrogen-bonded complexes, both experimental and theoretical, are of considerable interest [1–14]. The conventional hydrogen bond (H-Bond) where an X—H bond interacts with Y is represented by X—H···Y. Here X is an electronegative atom and Y with its electrons is a hydrogen bond acceptor and the formation of the H-Bond results in a red-shift of the X—H stretching frequency. There are a number of experimental and theoretical studies on this subject. During the last fifteen years there has been an emphasis on the study of weak hydrogen bonds involving C—H···O,

C—H··· π , O—H··· π and C—H···N interactions, as these serve as a driving force for many molecular phenomena and processes in chemistry, biology and material science [15]. Our interest in these weak hydrogen-bonded systems led early studies on hydrogen bonded complexes formed by CHF₃, CHCl₃, C₂H₄, C₆H₆ and C₆H₅N with C₂H₂ using matrix isolation infrared spectroscopy in an Ar matrix [16–19].

We have earlier found the experimental evidences for the 1:1 n- σ complex of C₂H₂ and Pyridine (C₆H₅N) in an Ar matrix. The complex is stabilized by C—H···N, where the H-bonded interaction is between the hydrogen of C₂H₂ and the lone pair of electrons on the nitrogen. *Ab initio* computations at the HF and B3LYP levels of theory using a 6-311++G(d,p) basis set were performed on the C₂H₂—NC₆H₅ complex supported the experimental observations [19].

^{*} Corresponding author. Tel.: +91 044 27480098; fax: +91 044 27480065. *E-mail address:* sundar@igcar.gov.in (K. Sundararajan).

Acetonitrile, CH₃CN has a unique properties such as high dielectric constant and remarkable miscibility with range of ionic and polar solvents [20] which makes CH₃CN as a solvent of choice for variety of organic synthesis. CH₃CN is also used as a mobile phase in HPLC and LC–MS. CH₃CN has been extensively used in synthetic organic chemistry and enormous literature on this area has been reported. Earlier, Freedman and Nixon investigated the infrared spectra of CH₃CN in solid argon matrix [21]. Later, Kim and Kim re-investigated the vibrational spectra of CH₃CN using Fourier transform infrared spectra and made precise assignments of monomers, dimers and higher mulitmers of CH₃CN [22]. Givan and Loewenschuss studied the Raman spectrum of CH₃CN using matrix isolation spectroscopy [23]. Coussan et al. studied the CH₃OH-CH₃CN complexes trapped in Ar and N₂ matrices. On photolysis, they observed both hydrogen-bonded homo and hetero aggregates of methanol in these matrices. Further, these aggregates are better formed in an Ar than in N_2 matrix [24]. Kryachko and Nguyen theoretically studied the hydrogen-bonded complexes of phenol and CH₃CN [25]. The computational results were correlated well with the experiments [26–29]. From the computations they predicted phenol and CH₃CN forms 1:1 σ and π -type complexes, where the former is more stable than the later. The π -type structure becomes more stable when one more acetonitrile molecule interacts with 1:1 phenol-acetonitrile complex. Phillips et al. studied the vibrational spectra of CH₃CN–BF₃ complexes in solid argon [30]. Later, Shimizu et al. studied the matrix effects on the vibrational spectra of the CH₃CN-BF₃ complex in solid matrices of Ar, N₂, and Xe [31].

Doo-sik Ahm and Sungyul Lee computationally studied the σ - and π -type hydrogen-bonded complexes of acetonitrile–water clusters. They found at MP2/6-31+G(d,p) level of theory the π -type complex is slightly lower in ZPE corrected energy by 0.11 kcal/mol, while the σ -type complex is of lower energy by 0.09 kcal/mol when MP2/aug-cc-pVDZ level of theory is employed [32].

Mixtures of CH₃CN and water are popular solvents and has been studied extensively both experimentally and theoretically [33–38]. Rutkowski et al. studied the formation of 1:1 complexes between acetylene and trimethylamine in liquefied krypton solvent. They observed red shift in the C-H region and blue shift in the CN stretching region in the complex. The experimental wavenumbers were correlated with MP2/6-311++G(2d,2p) level of theory [39]. Domagala and Gabrowski performed ab initio computations on the hydrogen-bonded complexes between hydrogen cyanide (HCN)···HF and acetylene (C_2H_2) ···HF using B3LYP and MP2 levels of theory with 6-311++G(d,p) basis set. They found that π -electrons of acetylene act as a proton accepting centers and the $C_2H_2\cdots HF$ complex forms a T-shaped structure whereas in the HCN···HF complex, the nitrogen atom in the hydrogen cyanide molecule acts as the proton acceptor center but not π -electrons [40]. Ault et al. reported photochemical reaction of CH₃CN with CrCl₂O₂ and OVCl₃ and the product was trapped in an Ar matrix. The formation of 1:1 complex was identified using UV/Vis spectroscopy. When the matrix was irradiated with light of $\lambda > 300$ nm, new features in the infrared spectra was observed and assigned for ONCCH3 complexes of CH₃CN n-oxide with CrCl₂O and VCl₃, respectively. Identification of these species was supported by extensive isotopic labeling (²H and ¹⁵N), as well as by B3LYP/6-311++G(d,2p) density functional calculations [41]. Suzuki et al. studied the 1:1 hydrogen-bonded complexes of acetonitrile with BF₃ in Ar, N₂ and Xe matrices. The experimental observed shift agreed well the calculation performed at B3LYP/6-311++G(d,p) level of theory [42]. Samet et al. studied the C-H...N hydrogen-bonded complexes of pentachlorocyclopropane (PCCP) with the bases acetonitrile, ammonia, monomethyl amine and dimethyl amine isolated in argon matrices at 10 K. Both IR spectroscopy and DFT computations supported the formation of 1:1 complexes between PCCP with different bases which was evidenced from the shift in the vibrational modes of PCCP and base sub-molecule [43].

Allamandola et al. studied 16 nitriles and related compounds in Ar and H_2O matrices. The strong $C \equiv N$ stretching vibrations of these compounds are probed using vibrational spectroscopy in matrices. The absorption band of these nitriles in Ar and H₂O matrices are then used to facilitate the search for these features observed by Infrared Space Observatory (ISO) [44]. Several groups studied the C-H···N interactions both by experimental and theoretical methods [45-48]. Recently, Zins and Krim studied the formation of 1:1 complex between Acetonitrile (CH₃CN) and formic acid (HCOOH) in neon matrix. The formation of the 1:1 complex is evidenced in the modes corresponding to the formic acid and acetonitrile sub-molecules. Ab initio computations performed at MP2/6-31++G(d,p) and MP2/aug-cc-pVTZ level of theories gave one minima for the 1:1 and 2:1 complex and two minima for the 1:2 complex. Experimentally, they also observed 2:1 and 1:2 CH₃CN-HCOOH complexes in Ne matrix. Further, they have photolysed the Ne matrix using VUV photons. The photochemical reaction induces the formation cyanomethanoic acid [49].

To best of our knowledge there is no matrix isolation infrared studies on the C_2H_2 with CH_3CN system. CH_3CN has two electron rich sites, lone pairs on nitrogen and $C \equiv N$ triple bond, which can form either a σ - or π -type hydrogen bond or both. Acetylene (C_2H_2) acts as a proton donor as the hydrogen attached to the 'sp' carbon atom is sufficiently acidic. Alternatively, C_2H_2 can also play the role of a proton acceptor through its π -cloud. It is interesting to study the interaction between the C_2H_2 and CH_3CN and to see the competing ability of CH_3CN and C_2H_2 as proton donors and acceptors. The present work is carried out with an aim to explore the possibility of forming 1:1 complexes between C_2H_2 and CH_3CN in Ar and N_2 matrices and to correlate with the computational results. We also explored the formation of higher C_2H_2 – CH_3CN complexes both computationally and experimentally.

Experimental and computational methods

Matrix isolation experiments were performed using a RDK-408D2 (Sumitomo Heavy Industries Ltd.) closed cycle helium compressor cooled cryostat. The cryostat was housed in a vacuum chamber where the base pressure was $<1 \times 10^{-6}$ mbar. C₂H₂ (Commercial Grade, Asiatic Oxygen Limited, India) and CH₃CN (Merck, HPLC grade 99.8%) were used as such, without further purification. Ar and N₂ (IOLAR Grade 2) is used as matrix gases, in which C₂H₂ were pre-mixed to obtain the desired matrix-to-sample ratios. The C₂H₂/matrix gas mixture and CH₃CN was then deposited using double jet nozzle onto a KBr substrate maintained at 12 K. We used typical matrix-to-sample ratios ranging from 1000:0.1 to 1000:0.2 for C₂H₂ and 1000:1 to 1000:2.5 for CH₃CN. The matrix was then deposited at a typical rate of ~3 mmol/h and a deposition typically lasted for about 60 min.

Infrared spectra of the matrix isolated samples were recorded in the range 4000–400 cm⁻¹, using a BOMEM MB 100 FTIR spectrometer, operated at a resolution of 1 cm^{-1} . The matrix was then slowly warmed to 35 K for Ar and 30 K for N₂ which was maintained at this temperature for about 15 min and then re-cooled to 12 K. Spectra of the annealed matrix were again recorded.

Theoretical calculations were performed for the C_2H_2 — CH_3CN complexes using GAUSSIAN 94W suite of programs package running on a Pentium 4 machine with 3.0 GHz processor [50]. Geometries of the precursor molecules were first optimized at B3LYP and MP2 levels of theory using 6-311++G(d,p) basis set and also at the B3LYP level using aug-cc-pVDZ basis set. Starting from the optimized monomer geometries, the geometry of the 1:1 complexes was then optimized without imposing any constraints. Calculations

Download English Version:

https://daneshyari.com/en/article/7809788

Download Persian Version:

https://daneshyari.com/article/7809788

Daneshyari.com