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h i g h l i g h t s

� One simple algebraic Hamiltonian
describes dierent molecule
geometries.
� 2-Dim vibron model describes rigidly

linear to rigidly bent molecules.
� The monodromy exhibited by water

is shown to represent an excited state
quantum phase transition.
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a b s t r a c t

Signatures of quantum phase transitions (QPTs) and excited state quantum phase transitions (ESQPTs) in
the bending motion of eight XYZ triatomic molecules (HCN, HNC, NiCN; CaOH, CaOD, MgOH, MgOD and
OCS), the large-amplitude bending degree of freedom of a tetratomic molecule (HNCS), and four symmet-
ric XY2 triatomic molecules (H2O,D2O,H2S,H2Se) are investigated in an attempt to understand their
dependence on the composition of the molecular species. It is shown that the isomerizing HCN/HNC sys-
tem leads to quasi-linearity, that the water molecule H2O displays a dramatic effect at Ex � 11,000 cm�1

with clear indication of an ESQPT at about vibrational quantum number tb = 8, and that the heavy water
molecule D2O is expected to undergo an ESQPT at tb = 10.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, considerable effort has gone into the study of
quantum phase transitions (QPTs) as zero-temperature phase tran-
sitions driven by the variation of one or more Hamiltonian param-
eters called the control parameter(s). Applications to a variety of
fields, ranging from Condensed Matter to Nuclear and Particle
Physics have been presented [1]. In a simple situation with only

one control parameter, n, the system’s Hamiltonian can be ex-
pressed as a combination of two Hamiltonians, bH1 and bH2, associ-
ated with physically different limiting casesbH ¼ ð1� nÞbH1 þ nbH2: ð1Þ

In this case the variation of the n control parameter from 0 to 1
drives the system from one limit to the other. In some cases an
abrupt change of the properties of the system’s ground state takes
place for small changes around a particular value of the control
parameter, called the critical value, nc, which causes qualitative
changes in the nature of the system’s ground state. These types of
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transitions are also known as ‘‘ground state transitions’’ from the
seminal work of Gilmore [2]. The nature of the changes that the sys-
tem undergoes around the critical value of the control parameter
can be studied in close analogy to the formalism of thermodynamic
phase transitions and are characterized according to Ehrenfest’s
classification as transitions of the first order, second order, etc.
The equivalence with the abrupt changes that take place in thermo-
dynamic phase transitions is achieved in the limit of very large
systems, but finite (mesoscopic) systems can be studied as the pre-
cursors of the phase transition and provide a great deal of informa-
tion on the system.

Very recently the excited state quantum phase transition
(ESQPT) concept has extended the QPT formalism to excited states
[3]. Whereas a QPT takes place in the system’s ground state upon a
change of the control parameter, an ESQPT is manifest in excited
states of the system as the excitation energy increases. Molecular
structure systems offer what is probably the best experimental
testing ground for ESQPT, due to the possibility of accessing highly
excited states in molecular spectroscopy. The concept of ESQPT is
closely related to that of quantum monodromy, introduced in
molecular physics by Child, Weston, and Tennyson [4] and ob-
served by Winnewisser et al. [5]. In fact, monodromy in molecular
bending degrees of freedom is a particular example of an ESQPT.

QPTs are transitions to different configurations of the system
under study. QPTs in molecular structure are transitions between
different molecular geometric configurations; in the case discussed
in this article the transition occurs between linear and bent molec-
ular geometries associated with a particular bending degree of
freedom.

In order to study QPTs and ESQPTs in the bending motion of
molecules, we make use of an algebraic model. In such models,
molecular degrees of freedom are treated as excitations in a boso-
nic space (vibrons) [6]. Algebraic models are an ideal tool for the
study of precursors of phase transitions in finite systems [7], since
the corresponding model Hamiltonian is easily diagonalizable and
thus the energies of the quantum states are easily calculable.
Extensive reviews of QPTs in algebraic models of atomic nuclei
can be found in Refs. [8–10]. The algebraic method used for the
study of molecular bending dynamics is the 2-dimensional Vibron
Model (2DVM), introduced by one of the authors and Oss [11] and
successfully applied to the study of the energy spectrum [12] and
transition intensities [13] of non-rigid molecules.

In a previous paper [14], two of the authors applied the con-
cepts of QPT and ESQPT to the study of vibrational bending degrees
of freedom in different polyatomic species. This work is in the
same vein with the study of quasi-linearity pioneered by Winne-
wisser and Winnewisser and reviewed in Winnewisser et al. [15].
The only difference is that while in [14] the 2-dim vibron model
was used, in [15] Hougen, Bunker, and Johns’ Rigid-Bender
Hamiltonian further enlarged to the Semi-Rigid and Generalized
Semi-Rigid Bender Hamiltonian [16] was used to calculate the
quantum levels.

In the present paper we focus our attention on the study of QPT
and ESQPT in the bending spectra of triatomic molecules, divided
into XYZ molecules (HCN, HNC, NiCN; CaOH, CaOD; MgOH, MgOD;
OCS) and XY2 molecules (H2O, D2O, H2S, H2Se), plus the large-
amplitude bending mode of a tetratomic molecule (HNCS) which
behaves similarly to the XYZ molecules. We find that while in the
XYZ molecules the dynamics of the transition from linear to bent
is identical to that previously studied in polyatomic molecules
[14], the spectra of XY2 molecules are more complex, specifically
when the molecules are of the form XH2. This is partly because
quantum effects become more important in the lightweight H
atoms. In particular, the simple quadratic Hamiltonian of [14] is
insufficient to describe accurately the spectrum of H2O. However,

with just one higher-order term, we are then able to describe the
dynamics fairly well (despite the Fermi resonance and Coriolis
interactions which are known to be present in this molecule) and
show that this model confirms the experimental evidence that
H2O undergoes an ESQPT. H2O is to date perhaps the best example
of an ESQPT in triatomic molecules, but in our previous paper [14]
and especially in [15] it was shown that NCNCS is the best example
of an ESQPT in polyatomic molecules, with remarkable experimen-
tal evidence (see Fig. 17 of [14]).

After the introductory remarks of this section, an abridged
explanation of the basic facts about the 2-dim vibron model and
its extension to higher order is given in Section 2. Section 3 is de-
voted to briefly presenting the spectroscopic signatures that char-
acterize QPT and ESQPT, while Section 4 presents the model results
for each of the molecules addressed. Finally, concluding remarks
are provided in Section 5.

2. The two-dimensional vibron model (2DVM)

The 2-dim Vibron Model (2DVM) associates a U(3) Lie algebra to
one bending degree of freedom [11,12]. For a detailed description
of the model see Ref. [17]. The most general rotational and par-
ity-invariant 2DVM Hamiltonian, including one- and two-body
operators, isbH ¼ en̂þ an̂ðn̂þ 1Þ þ b‘̂2 þ AbP; ð2Þ

where the four spectroscopic parameters e, a, b, and A are adjust-
able parameters. A numerically convenient basis to compute the
Hamiltonian matrix elements is a truncated 2-dim harmonic oscil-
lator basis, j[N]; n‘i, also written as jN;n,‘i, where the parameter N
is equal to the total number of bosons (vibrons) in the system and,
though it can be related to the total number of bound states, it has
been considered an additional adjustable parameter. See Appendix
A for a discussion of how values of N are fixed in this study. The
quantum numbers n and ‘ are the eigenvalues of the operators n̂
and ‘̂ and take the values n = 0, 1, . . . , N and ‘ = ±n, ±(n � 2), . . . ,
±1 or 0, (n = odd or even). These have the usual interpretation as
the number of quanta of excitation in the harmonic oscillator and
the 2-dim angular momentum, i.e. the vibrational angular momen-
tum in the particular case of bending dynamics. The vibrational
angular momentum quantum number ‘ typically used in linear spe-
cies corresponds to the projection of the angular momentum in the
figure axis Ka for bent species, but both labels can be used inter-
changeably [11,14,17].

The operators n̂ and ‘̂ are diagonal in the basis jN;n,‘i while the
action of the pairing operator bP on the basis elements is as follows

hN; n0; ‘ j bP j N; n; ‘i
¼ ðN � nÞðN � n� 1Þ þ n2 � ‘2� �

dn0 ;n

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN � nþ 2ÞðN � nþ 1Þðnþ ‘Þðn� ‘Þ

p
dn0 ;n�2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN � nÞðN � n� 1Þðnþ ‘þ 2Þðn� ‘þ 2Þ

p
dn0 ;nþ2: ð3Þ

The system excitation energies for a fixed value of N and a given set
of spectroscopic parameters is computed by diagonalizing the Ham-
iltonian matrix in the jN;n,‘ibasis and performing an iterative non-
linear least squares minimization to maximize the accordance with
experimental term values.

The consideration of the classical limit of the algebraic Hamilto-
nian offers considerable physical insight into the problem under
study and this limit can be obtained using the coherent (or intrin-
sic) state approach, first presented for applications to nuclear
physics in Ref. [18], and later applied to molecular physics in
Refs. [19,20]. The potential energy functional associated with
Hamiltonian (2) is
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