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a b s t r a c t

In the present work, the fatigue life of homogeneous plate containing multiple discontinuities (holes,
minor cracks and inclusions) is evaluated by extended finite element method (XFEM) under cyclic loading
condition. The multiple discontinuities of arbitrary size are randomly distributed in the plate. The values
of stress intensity factors (SIFs) are extracted from the XFEM solution by domain based interaction inte-
gral approach. Standard Paris fatigue crack growth law is used for the life estimation of various model
problems. The effect of the minor cracks, voids and inclusions on the fatigue life of the material is
discussed in detail.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The analysis of fatigue crack growth is very important to ensure
the reliability of structures under cyclic loading conditions. The fa-
tigue life of components is mainly predicted by traditional strength
based theories. These theories do not account the presence of de-
fects, irregularities and discontinuities, which are either developed
at the manufacturing stage or during application. Therefore, the
fracture based numerical simulations have extensive application
to quantify and predict the fatigue life of component in presence
of such defects and discontinuities. An accurate evaluation of frac-
ture parameters such as stress intensity factors (SIFs) becomes quite
essential for the simulation based life cycle design analysis. To sim-
ulate cracked structures, a number of methods such as boundary
element method [1–3], meshfree methods [4–7], finite element
method (FEM), and finite difference method (FDM) are available.
FEM has been in the forefront of numerical methods used for the
simulation of fatigue fracture problems. A number of approaches
have been developed in FEM over the years, which makes it as a
most suited method for analyzing the asymptotic stress fields at
the crack tip. However, FEM requires that the crack surface should
coincide with the edge of the finite elements, i.e. a conformal mesh
is needed besides special elements to handle crack tip asymptotic
stresses. Hence, the modeling and simulation of several discontinu-
ities and defects using FEM becomes quite cumbersome. To over-

come these difficulties, a novel approach known as extended finite
element method (XFEM) [8–12] has been developed. This method
allows the modeling of the crack geometry independent of the
mesh, and completely avoids the need of re-meshing as the crack
grows. In this method, the modeling of a crack growth and arbitrary
discontinuities is performed by enriching the approximation func-
tion [9]. The level set method [12–16] has been widely used to mod-
el the crack growth. Till date, XFEM has extensively used to solve the
problems of fracture mechanics including crack growth with fric-
tional contact [17], cohesive crack propagation [18–21], quasi-static
crack growth [22], arbitrary branched and intersecting cracks [23],
and cracks in shells [24], fatigue crack propagation [25–28], station-
ary and growing cracks [15], and three-dimensional crack propaga-
tion [29,30].

The main aim of this paper is to accurately evaluate the fatigue
life of structures/components having multiple discontinuities such
as holes, cracks and inclusions. The plane crack problems are chosen
and solved by XFEM in the presence of multiple arbitrary sizes and
randomly located discontinuities. The fatigue crack propagation has
been simulated by treating the crack growth as a linear combination
of line segments. The direction of crack growth is obtained by max-
imum principal stress criterion [7]. The stress intensity factors (SIFs)
are extracted from the XFEM solution by domain based interaction
integral approach. After evaluating SIFs at the crack tip, Generalized
Paris’ law is used to compute the fatigue life. A comparison of XFEM
results with those obtained by re-meshing approach (ANSYS) and
experimental results has also been presented [31–35] for few model
problems.
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2. Numerical formulation

2.1. Governing equations

A given domain (X) boundary is partitioned into displacement
(Cu), traction (Ct) and traction-free (Cc) boundaries as shown in
Fig. 1. The equilibrium conditions and boundary conditions [10]
are given as

r � rþ b ¼ 0 in X ð1Þ

r � n̂ ¼ �t on Ct ð1aÞ

r � n̂ ¼ 0 on Cc ð1bÞ

where r is the Cauchy stress tensor, u is the displacement field, b is
the body force per unit volume and n̂ is the unit outward normal.
For small displacements, the kinematics equations consist of the
following strain–displacement relations:

e ¼ eðuÞ ¼ rsu ð2Þ

where rs is the symmetric part of the gradient operator. The
boundary conditions

u ¼ �u on Cu ð3Þ

The constitutive relation for the elastic material under consideration
is given by Hook’s law

r ¼ De ð4Þ

where D is the Hooke’s tensor.

2.2. Weak formulation

A weak form of the equilibrium equation [9] can be written asZ
X
rðuÞ : eðvÞdX ¼

Z
X

b � v dXþ
Z

Ct

�t � v dC ð5Þ

By substituting the trial and test functions in above equation and
using the arbitrariness of the nodal variations, the following dis-
crete equations are obtained

½K�fdg ¼ ffg ð6Þ

where d is the vector of nodal unknowns, K and f are the global
stiffness matrix and external force vector respectively.

2.3. XFEM approximation for cracks

In two-dimensional crack modeling, the enriched trial and test
functions [10,16,36] are written in general form as

uhðxÞ ¼
Xn

i¼1

NiðxÞ �ui þ ½HðxÞ � HðxiÞ�ai|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
i2nr

þ
X4

a¼1
½baðxÞ � baðxiÞ�ba

i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
i2nA

2
664

3
775
ð7Þ

where �ui is a nodal displacement vector associated with the contin-
uous part of the finite element solution. n is the set of all nodes in
the mesh, nr is the set of nodes belonging to those elements which
are completely cut by the crack, nA is the set of nodes belonging to
those elements, which are partially cut by the crack. ai is the nodal
enriched degree of freedom associated with Heaviside function H(x)
(Heaviside is +1 on one side of the discontinuity and �1 on other
side of the discontinuity), and ba

i are the nodal enriched degree of
freedom associated with crack tip enrichment, ba(x). The crack tip
enrichment are defined as

baðxÞ ¼
ffiffiffi
r
p

cos h
2 ;

ffiffiffi
r
p

sin h
2 ;

ffiffiffi
r
p

cos h
2 sin h;

ffiffiffi
r
p

sin h
2 sin h

� �
ð8Þ

where r and h are the local crack tip parameters.

2.4. XFEM approximation for holes

The XFEM approximation for holes [16] can be written as

uhðxÞ ¼
Xn

i¼1

NiðxÞ �ui þ ½HðxÞ � HðxiÞ�ai|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
i2nr

2
64

3
75 ð9Þ

The Heaviside jump function, H(x) takes a value of +1 on one side
and 0 on the other side i.e. inside the hole.

2.5. XFEM approximation for inclusions

The XFEM approximation for inclusions [16] can be written as

uh ¼
Xn

j¼1

NjðxÞ½uj þ v½wðxÞ�aj� ð10Þ

where v[w(x)] is a local enrichment function, defined as v[w(x)] =
|w(x)| and w(x) is the level set function.

2.6. XFEM formulation for a crack

Using the approximation function defined in Eq. (7) for a crack,
the elemental matrices, K and f are obtained as

Ke
ij ¼

Kuu
ij Kua

ij Kub
ij

Kau
ij Kaa

ij Kab
ij

Kbu
ij Kba

ij Kbb
ij

2
664

3
775 ð11aÞ

fh ¼ fu
i fa

i fb1
i fb2

i fb3
i fb4

i

n oT
ð11bÞ

The sub-matrices and vectors that appear in the foregoing equa-
tions are given as

Krs
ij ¼

Z
Xe
ðBr

i Þ
T DBs

j h dX where r; s ¼ u; a; b ð12Þ

fu
i ¼

Z
Xe

Nib dXþ
Z

Ct

Ni
�t dC ð13Þ

fa
i ¼

Z
Xe

NiðHðxÞ � HðxiÞÞb dXþ
Z

Ct

NiðHðxÞ � HðxiÞÞ�t dC ð14Þ

tΓ

uΓ

cΓ

Ω

xe

ye 

Fig. 1. Domain with a discontinuity (crack).
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