Phytochemistry 146 (2018) 63-74

Contents lists available at ScienceDirect

Phytochemistry

journal homepage: www.elsevier.com/locate/phytochem

Polycyclic polyprenylated acylphloroglucinols and biphenyl derivatives from the roots of *Garcinia nuntasaenii* Ngerns. & Suddee

^a Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand

^b Research and Development Department, International Laboratories Corp., Ltd., Bang Phli, Samut Prakan 10540, Thailand

^c Mahidol University, Center of Excellence for Innovation in Chemistry (PERCH-CIC), Kanchanaburi Campus, Saiyok, Kanchanaburi 71150, Thailand

^d Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand

^e Department of Microbiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand

^f The Forest Herbarium, Department of National Parks, Wildlife and Plant Conservation, Ministry of Natural Resources and Environment, Bangkok 10900, Thailand

ARTICLE INFO

Article history: Received 30 August 2017 Received in revised form 30 November 2017 Accepted 4 December 2017

Keywords: Garcinia nuntasaenii Clusiaceae Polyprenylated acylphloroglucinols Biphenyls Triterpene Garcinuntins A–C Garcinuntabiphenyls A–C Garcinuntine Syncytium inhibition

ABSTRACT

Seven previously undescribed compounds, including three polycyclic polyprenylated acylphloroglucinols (garcinuntins A–C), three biphenyl derivatives (garcinuntabiphenyls A–C) and a lanostane triterpene (garcinuntine), along with thirteen known compounds were isolated from the root of *Garcinia nuntasaenii* Ngerns. & Suddee. Their structures were elucidated on the basis of spectroscopic techniques. For garcinuntins A–C, the absolute configurations were confirmed by the combination of single X-ray crystallography and ECD calculations. Anti-HIV activity using anti-HIV-1 reverse transcriptase and syncytium inhibition assays, and cytotoxic activity against a panel of cultured mammalian cancer cell lines of isolated compounds were investigated.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Garcinia genus belongs to the large family Clusiaceae (Guttiferae). A number of plants in this genus have been regarded as medicinal plants and they are used in folk medicine and food. Reports on *Garcinia* plants indicated that they produce a large number of biologically active substances such as flavonoids, polycyclic polyprenylated acylphloroglucinols (PPAPs), xanthones and

* Corresponding author. *E-mail address:* vichai.reu@mahidol.ac.th (V. Reutrakul). terpenoids (Ciochina and Grossman, 2006; Hongthong et al., 2016; Reutrakul et al., 2007, 2010), and some of which display remarkable biological activities.

Garcinia nuntasaenii Ngerns. & Suddee (Clusiaceae) was recently identified as a previously unclassified species in the *Garcinia* genus (Ngernsaengsaruay and Suddee, 2016). It is a shrub growing up to 1–2-m in height with white flowers and green fruits and commonly called "Chang-nga-ek" in Thai. It was sporadically found in the open-dry evergreen forest of the northeastern part of Thailand and its root is used in Thai folk medicine for treatment of muscle pain. Preliminary screening of the crude *n*-hexane, ethyl acetate and methanol extracts of the roots of *G. nuntasaenii* showed

PHYTOCHEMISTR

significant anti-inflammatory and anti-HIV activities. In the course of our continuing efforts to search for biologically active substances from plants in the *Garcinia* genus, we report the isolation and structural identification of previously undescribed compounds including three polycyclic polyprenylated acylphloroglucinols **1–3**, three biphenyl derivatives **4–6**, and a triterpene **7** (Fig. 1), along with thirteen known compounds **8–20** (Scheme S1) from the roots of *G. nuntasaenii*. The structures of these compounds were established via spectroscopic data or by comparison with the literature data. The biological activities of the isolated compounds were evaluated in a cytotoxicity assay against a panel of cultured mammalian cancer cell lines and in an anti-HIV-1 *in vitro* system. This work represents the first phytochemical investigation of the plant species.

2. Results and discussion

Garcinuntin A (1) was obtained as colorless needles and its molecular formula C₃₈H₅₀O₄ was determined on the basis of the HRESIMS peak at m/z 593.3600 [M + Na]⁺ (calcd for C₃₈H₅₀O₄Na, 593.3601). The major peaks at 1716, 1694 and 1640 cm^{-1} in its FT-IR spectrum indicated the presence of three carbonyl groups in the molecule. The UV spectrum showed the absorption bands at λ_{max} 197, 247 and 277 nm in MeCN. The ¹H NMR spectroscopic data (Table 1) revealed the presence of monosubstituted phenyl group $[\delta_{\rm H}$ 7.55 (2H, dd, J = 8.3, 1.3 Hz), 7.40 (1H, tt, J = 7.5, 1.3 Hz), 7.27 (2H, dd, J = 8.3, 7.5 Hz)] corresponding to the carbon resonances at $\delta_{\rm C}$ 128.5 \times 2, 132.0, and 127.9 \times 2, respectively. Two vinylic protons [$\delta_{\rm H}$ 4.97 (1H, br t, *J* = 6.6 Hz, H-33), 5.08 (1H, s, H-25)], and nine methyl groups [$\delta_{\rm H}$ 0.91, 0.96, 1.12, 1.22, 1.39, 1.53, 1.56, and 1.66 \times 2 (each 3H, s)] suggested the presence of isoprenyl groups. The ${}^{13}C$ NMR spectrum (Table 1) showed a non-conjugated ketone ($\delta_{\rm C}$ 208.0), a conjugated carbonyl (δ_{C} 193.1), an enone moiety (δ_{C} 191.9, 113.0 and 170.1), three quaternary carbons ($\delta_{\rm C}$ 79.7, 56.3, and 49.0), a methine carbon (δ_C 43.8) and a methylene carbon (δ_C 43.3). These data suggested a dimethyl substituted bicyclo[3.3.1]nonane ring system bonded to a benzoyl moiety, a known common feature in PPAPs.

In comparison of the NMR data with those of propolone A (Rubio et al., 1999), the prenyl side chain at C-5 (δ_{C} 56.3) found in propolone A was replaced by a (2,4,4-trimethylcyclohex-2-en-1-yl)methyl residue. The connectivity of the cyclohexenvl moiety was confirmed by the HMBC correlations from the vinvlic proton H-25 [$\delta_{\rm H}$ 5.08 (1H. s)] to three methyl carbons, C-29, C-30, C-31 (δ_{C} 22.0, 29.3, and 30.8, respectively), a methine carbon C-23 ($\delta_{\rm C}$ 34.9) and a methylene carbon C-27 (δ_{C} 34.1) as well as from the gem-dimethyl protons H-30 and H-31 ($\delta_{\rm H}$ 0.91 (3H, s) and 0.96 (3H, s), respectively) to the carbon C-27 ($\delta_{\rm C}$ 34.1) and olefinic methine carbon C-25 ($\delta_{\rm C}$ 133.1) (Fig. 2). The cross peaks between the methylene protons H-22 ($\delta_{\rm H}$ 1.91, m) to quaternary olefinic carbon C-24 ($\delta_{\rm C}$ 135.1), a methylene carbon C-6 $(\delta_{\rm C}$ 43.3), isolated carbonyl carbon C-9 $(\delta_{\rm C}$ 208.0), quaternary carbon C-5($\delta_{\rm C}$ 56.3) and conjugated olefinic carbon C-4($\delta_{\rm C}$ 170.1) supported the (2,4,4-trimethylcyclohex-2-en-1-yl)methyl residue to locate at C-5 (Fig. 2).

On the basis of the previously described core skeleton of PPAPs (type A) (Ciochina and Grossman, 2006), the up-field shift of C-7 carbon (δ_C 43.8), and a large coupling constant of diaxial protons H- 6_{ax} and H-7 (3J = 13.0 Hz) (Piccinelli et al., 2005), along with the cofacial relationship between H- 6_{ax} , H-32 and H-37 in the NOESY spectrum (Fig. 2), suggested the isoprenyl side chain at C-7 to locate in an equatorial orientation.

Although the relative configuration at the chiral carbon C-23 could not be precisely assigned using NOESY data, the relative stereochemistry of **1** was later unambiguously assigned by means of single X-ray crystallographic technique using Mo K α radiation (Fig. 3). Based on the spectroscopic data described above, compound **1** was possibly assigned as (1*R*,5*R*,7*S*,23*R*)-**1** or its enantiomers. Furthermore, the electronic circular dichroism (ECD) experiment and ECD calculation of **1** were conducted. The experimental ECD spectrum of **1** was in accordance with the calculated ECD spectrum for (1*R*,5*R*,7*S*,23*R*)-**1** (Fig. 4). Therefore, the absolute configurations of **1** were finally determined to be (1*R*,5*R*,7*S*,23*R*)-**1** and its chemical structure is depicted as shown (Fig. 1).

Fig. 1. Structures of compounds 1–7.

Download English Version:

https://daneshyari.com/en/article/7817918

Download Persian Version:

https://daneshyari.com/article/7817918

Daneshyari.com