Phytochemistry 146 (2018) 82-90

Contents lists available at ScienceDirect

Phytochemistry

journal homepage: www.elsevier.com/locate/phytochem

Diterpenoids from the roots of *Euphorbia ebracteolata* and their inhibitory effects on human carboxylesterase 2

An-Hua Wang ^{a, b}, Xiang-Ge Tian ^b, Yong-Lei Cui ^b, Xiao-Kui Huo ^b, Bao-Jing Zhang ^b, Sa Deng ^b, Lei Feng ^b, Xiao-Chi Ma ^b, Jing-Ming Jia ^{a, **}, Chao Wang ^{b, *}

^a School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China ^b College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian 116044, People's Republic of China

A R T I C L E I N F O

Article history: Received 26 July 2017 Received in revised form 5 December 2017 Accepted 7 December 2017

Keywords: Euphorbia ebracteolata Euphorbiaceae Diterpenoid Human carboxylesterase 2 Inhibitory kinetics

ABSTRACT

A chemical investigation of the roots of *Euphorbia ebracteolata* identified eighteen diterpenoids and glycosides. On the basis of spectroscopic data, they were determined to be *ent*-kauranes, *ent*-atisanes, tigliane derivatives, ingenane, and *ent*-abietanes, among which were eleven previously undescribed diterpenoids. The inhibitory effects of the isolated compounds against human carboxylesterase 2 (hCE-2) were evaluated *in vitro*, which revealed moderate inhibitory effects with IC₅₀ values < 50 μ M. Next, the inhibitory kinetics were evaluated for the putative hCE-2 inhibitor 4β ,9 α ,16,20-tetrahydroxy-14(13 \rightarrow 12)-abeo-12 α H-1,6-tigliadiene-3,13-dione (IC₅₀ 3.88 μ M), and results indicated competitive inhibition with K_i 4.94 μ M. Additionally, none of the diterpenoids showed cytotoxic effects against five human tumor cell lines as determined by MTT assays.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Euphorbia ebracteolata Hayata, a perennial herbaceous plant in the Euphorbiaceae family, is distributed throughout Asia. Previous chemical studies of this plant have revealed the presence of diterpenoids (Liang et al., 2014; Liu et al., 2014a, b; Mu et al., 2013), acetophenones (Geng et al., 2015; Zhang et al., 2010), monoterpenes (Wang et al., 2015) and flavonol glycosides (Liu et al., 2004). Extracts of *E. ebracteolata* roots have been used to treat tuberculosis, ascites, and cancer in traditional Chinese medicine (Fu et al., 2006; Shi et al., 2005). The diterpenoids in particular have been shown to exert a range of biological effects, such as anti-tumor, anti-bacterial, anti-inflammatory and immunostimulatory activities (Xu et al., 1998, 2000; Zhang et al., 2009). protease superfamily (Takai et al., 1997; Wang et al., 2011), is widely distributed in the livers and intestines of mammals (Furihata et al., 2003; Kuykendall et al., 1993; Nishi et al., 2006) where it hydrolyzes a variety of endogenous and exogenous substances (Thomsen et al., 2014) such as drugs and environmental toxins. However, the metabolism of drugs by hCE-2 results in adverse clinical reactions (Laizure et al., 2014) such as the reduced biological availability of drugs. Thus, the development of an hCE-2 inhibitor is an active area of current medical research. In the present investigation of the diterpenoids of *E. ebracteolata*, 11 previously undescribed diterpenoids were identified together

Human carboxylesterase 2 (hCE-2), which belongs to the serine

11 previously undescribed diterpenoids were identified together with 7 known compounds (Fig. 1). The structures of the isolated diterpenoids were determined from various spectroscopic data. The inhibitory effects of the isolated compounds on hCE-2 were evaluated *in vitro* using a fluorescent bioassay. The inhibitory kinetics of the promising compound **9** were investigated. Finally, the cytotoxic activity of these compounds against five human cancer cell lines was evaluated *in vitro* using MTT assays.

2. Results and discussion

Compound **1** was obtained as a white amorphous powder, with the molecular formula $C_{26}H_{42}O_9$ as established by the positive

^{*} Corresponding author. College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Western 9, Lvshun South Road, Dalian 116044, People's Republic of China.

^{**} Corresponding author. School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, People's Republic of China.

E-mail addresses: jiajingming@163.com (J.-M. Jia), wach_edu@sina.com (C. Wang).

Fig. 1. Diterpenoids obtained from the roots of Euphorbia ebracteolata.

HRESIMS m/z 521.2738 [M + Na]⁺ (calcd for C₂₆H₄₂O₉Na, 521.2729). The ¹H NMR spectrum suggested the presence of two methyl groups ($\delta_{\rm H}$ 1.04, 1.20, each 3H, s), three oxygenated methylene groups (δ_H 4.18, 3.33; δ_H 3.24, 3.13; δ_H 3.66, 3.41), and five oxygenated methine groups ($\delta_{\rm H}$ 4.02, 3.08 (2H), 3.00, 2.88) (Table 1). Twenty-six carbons were observed in the ¹³C NMR spectrum, which indicated moieties such as a ketone (δ_{C} 213.3) and oxygenated carbons (δ_C 102.9, 78.4, 76.9, 76.7, 73.2, 70.7, 70.1, 69.1, 61.1) (Table 2). The NMR data suggested that compound 1 is an *ent*kaurane type diterpenoid glycoside possessing a monosaccharide moiety. In the HMBC spectrum, the long-range correlations H-1 ($\delta_{\rm H}$ 2.06, 1.19)/C-3, H-18 ($\delta_{\rm H}$ 1.04)/C-3 ($\delta_{\rm C}$ 213.3), H-19 ($\delta_{\rm H}$ 4.18, 3.33)/C-3, H-5 ($\delta_{\rm H}$ 1.21)/C-19 ($\delta_{\rm C}$ 70.7), and H-18 ($\delta_{\rm H}$ 1.04)/C-19 established the 3-ketone and 19-CH₂OH groups (Fig. 2). The observed HMBC correlations H-14 ($\delta_{\rm H}$ 1.84)/C-16 ($\delta_{\rm C}$ 78.4), H-15 ($\delta_{\rm H}$ 1.34, 1.25)/C-16, H-15/C-17 (69.1), and H-17 ($\delta_{\rm H}$ 3.24, 3.13)/C-13 ($\delta_{\rm C}$ 40.5) determined the presence of the 16,17-diols. In the ¹H-¹H COSY spectrum, three different spin-spin systems (H-1/H-2, H5/H-6, H-9/H-11/H-12/H-13) were established by the correlations H-1 ($\delta_{\rm H}$ 1.19)/H-2 ($\delta_{\rm H}$ 2.77), H-5 ($\delta_{\rm H}$ 1.21)/H-6 ($\delta_{\rm H}$ 1.48), H-9 ($\delta_{\rm H}$ 1.06)/H-11 ($\delta_{\rm H}$ 2.01), and H-11 $(\delta_{\rm H} \ 1.45)/{\rm H}$ -12 $(\delta_{\rm H} \ 1.75)/{\rm H}$ -13 $(\delta_{\rm H} \ 1.94)/{\rm H}$ -14 $(\delta_{\rm H} \ 0.99)$. The abovementioned spectroscopic data indicated that the aglycon substructure of **1** was similar to *ent*-kaurane- 16β ,17,19-triol-3-one (Liu et al., 2017). The monosaccharide moiety was determined to be β -D-glucopyranose by the NMR data with the anomeric proton signal ($\delta_{\rm H}$ 4.02, d, $J = 8.0 \,\text{Hz}$) and an acid hydrolysis experiment with D-glucose as a standard reference. Based on the long-range correlation of H-1' ($\delta_{\rm H}$ 4.02)/C-19 observed in the HMBC data, the glucose moiety was located at C-19 of the ent-kaurane diterpenoid. The relative configurations of diterpenoid skeleton were determined on the basis of the NOE correlations H-19/H-20 and H-13/H-17, which were same as those of *ent*-kaurane- 16β ,17,19-triol-3-one (Fig. 2). Data from ECD revealed a negative Cotton effect at 297 nm $(n \rightarrow \pi)$, which suggested a 5S absolute configuration using the ketone octant rule (Ye, 1999) (Supplementary data, Fig. S9). Additionally, ¹³C NMR calculations were performed to distinguish *ent*-kaurane diterpenoid **1** from *ent*-atisane diterpenoid **4** based on the linkages C-16/C-13 and C-16/C-12, respectively. The calculated ¹³C NMR data of the aglycon substructure (without C-19) of compounds 1 and 4 is shown in Table 2, showing that the C-16 signal of compound **1** was downshifted by $\Delta \delta_{\rm C} = 6$ ppm compared with that of compound 4. Moreover, regression analysis of experimental versus calculated ¹³C NMR chemical shifts of **1** at mPW1PW91/6-311 + G(d,p) level in gas phase showed a high degree of correlation $(R^2 = 0.9969)$, which confirmed the *ent*-kaurane skeleton of **1** (Fig. S1, Supplementary Data). Therefore, the structure of compound **1** (*ent*-kaurane-16β,17-diol-3-one-19-O-β-D-glucopyranoside) was unequivocally characterized as shown.

The spectroscopic data of compound **2** indicated that it was similar to **1**, except that **2** contains an extra galloyl group ($\delta_{\rm H}$ 6.96 s; $\delta_{\rm C}$ 119.2, 108.6, 145.4, 138.5, 165.8). In the HMBC spectrum of **2**, a long-range correlation between H-6' ($\delta_{\rm H}$ 4.29) of the glucopyranose group and the carboxylic carbon ($\delta_{\rm C}$ 165.8) of the galloyl moiety was

Download English Version:

https://daneshyari.com/en/article/7817930

Download Persian Version:

https://daneshyari.com/article/7817930

Daneshyari.com