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a b s t r a c t

Based on third-order Newton’s Interpolation theory, this paper proposed one method to compute

milling stability. The machining is first considered as a dynamic process expressed by a mathematical

equation, and this equation integrates the regenerative effect utilizing a time delay item. The time

period is discretized as a series of small elements. Then, in each time element, the third-order Newton’s

interpolation algorithm is used to approximate the state item of the equation. The time-period and

time-delay items are expressed by liner-interpolation. After equation items are expressed using the

interpolation method on the time period, a matrix denoting the machining system is built. Taking

advantage of the matrix, the stability of milling process is investigated, and the convergence feature of

the proposed method is also analyzed. Finally, examples of 1-dof and 2-dof dynamic systems are

conducted and the comparison results show that the method is effective.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In milling process, machining chatter has negative influence
on the machined surface quality. How to avoid vibration is a key
issue to improve machining efficiency and accuracy. The dynamic
process described by delay-differential equations (DDEs) [1,2]
embraces regeneration of instantaneous uncut chip thickness, and
the stability prediction based on DDEs can be used to find the
relations between axial cutting depth, radial cutting depth and
the rotation speed of the machine via stability lobe diagrams.

Except the experimental method [3] and the experimental–
analytical method [4], numerical algorithms of predicting stability
lobes have been developed. Altintas and Budak [3–8] have made
great effort on this aspect. Their basic way to predict stability
lobes is translating DDEs from time domain to frequency domain
using Laplace Transform. And then the limit axial cutting depth
and corresponding rational speed are calculated utilizing real and
image part of the characteristic equation of the system in
frequency domain under the premise of giving radial cutting
depth. Utilizing the method, Kivanc and Budak [9,10] took finite
element analysis(FEA) as a tool to carry out the static and
dynamic analysis of tools with different geometry and material,
then predict stablilty lobes. Using the same idea as Kivanc, Ozlu
and Budak [11,12] proposed a method for predicting stablilty
limits in turning and boring operations.

In addition, the numerical algorithms in time domain are also
developed. Insperger and Stépán [1] proposed a significant
updated semi discretization method to predict the stability lobes.
And the result has been proved efficient by Catania and Manci-
nelli [13]. In their milling machine-tool model, the system is
divided into two parts. The first part contains the machine frame
and the spindle, the other is the cutter. The advantage of this
method is it does not need experiment tests when changing cutter.
Smith and Tlusty [14], Zhao and Balachandran [15] also developed
numerical methods to predict the stablilty lobes. Recently, Ding
et al. [16] introduced a numerical integration scheme to obtain the
stablity lobes. Then they [17,18] first developed one-order and
second-order full-discretization methods which have shown good
advantages to predict stablilty lobes. Tamas [19] also made some
comparations between the semi-discretization method (SDM) and
the full-discretization method (FDM).

The purpose of this short communication is to update the FDM
method by a third-order Newton’s interpolation theory and make
detailed comparisons with the existing FDM method and the SDM
method to show the characteristics and necessity of developing a
three-order FDM method.

2. Mathmatical modal of third-order FDM

The dynamic system of the machine-tool with regenerative
effect can be expressed by a n-dimensional equation in the state-
space as [17]

_x tð Þ ¼ A0x tð ÞþA tð Þx tð ÞþB tð Þx t�Tð Þ ð1Þ
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where A0 is the constant matrix standing for the time invariants
of the dynamic system. A(t) and B(t) are two periodic functions
with the period T. x(t) is the state variable of the system. The
solution of this time delay differential equation is as follows:

xðtÞ ¼ eA0ðt�t0Þxðt0Þþ

Z t

t0

eA0ðt�tÞ½AðtÞxðtÞþBðtÞxðt�TÞ�dt ð2Þ

In order to obtain the stability lobes of the dynamic system,
the first step is to divide the period T into m time-intervals, and
for each time interval the solution of the time delay differential
equation can also use the form of Eq. (2). Thus, for the ith time
interval, the solution is expressed as

xðtÞ ¼ eA0ðt�ihÞxðt0Þþ

Z t

ih
eA0ðt�tÞ½AðtÞxðtÞþBðtÞxðt�TÞ�dt ð3Þ

with h¼T/m and tA[ih, (iþ1)h]. Let xi stand for x(ih). Then x(kþ1)

can be given as

xðkþ1Þ ¼ eA0hxkþ

Z h

0
eA0ðt�tÞ½AðeÞxðeÞþBðeÞxðe�TÞ�de ð4Þ

where e¼t�kh, eA[0,h].
The next step is to substitute Eq. (4) using one- and third-order

interpolation theories. For kth time interval, A(e), B(e) and x(e�T)
are interpolated by two boundaries of the kth time interval [Ak,
A(kþ1)], [Bk, B(kþ1)] and [x(k�m), x(kþ1�m)] correspondingly as

A eð Þ � e
h

A kþ1ð Þ þ
h�e

h
Ak ð5Þ

B eð Þ � e
h

B kþ1ð Þ þ
h�e

h
Bk ð6Þ

x e�Tð Þ �
e
h

x kþ1�mð Þ þ
h�e

h
x k�mð Þ ð7Þ

where x(e) can be approximated by third-order Newton’s inter-
polation equation using x(kþ1), xk, x(k�1) and x(k�2) as follows:

xðeÞ � axðkþ1Þ þbxkþcxðk�1Þ þdxðk�2Þ

a�
e3þ3e2hþeh2

6h3

b�
e2þ3ehþh2

2h2
�
e3þ3e2hþeh2

2h3

c�
eþ2h

h
�
e2þ3ehþh2

h2
þ
e3þ3e2hþeh2

2h3

d�
h�eþ2h

h
þ
e2þ3ehþh2

2h2
�
e3þ3e2hþeh2

6h3
ð8Þ

Then A(e), B(e), x(e�T) and x(e) in Eq. (4) are substituted by
Eq. (5–8), and after simplifying, Eq. (4) can be expressed using

xðkþ1Þ ¼ ðI�F1Þ
�1
ðF0þF2ÞxkþðI�F1Þ

�1F3xðk�1Þ þðI�F1Þ
�1F4xðk�2Þ

þðI�F1Þ
�1Fm�1xðkþ1�mÞ þðI�F1Þ

�1Fmxðk�mÞ ð9Þ

F0 ¼ f0 ¼ eA0h ð10Þ

F1 ¼ f0ðf5þ3hf4þh2f3ÞAðkþ1Þ=6h4

þf0ð2h3f2þh2f3�2hf4�f5ÞAk=6h4
ð11Þ

F2 ¼ f0ðf4þ3hf3þ2h2f2ÞAðkþ1Þ=2h3

þf0ð6h3f1þ3h2f2�6hf3�f4ÞAk=6h3
�3F1 ð12Þ

F3 ¼ f0ðf3þ2hf2ÞAðkþ1Þ=h2

þf0ð2h2f1�hf2�f3ÞAk=h2
�2F2�3F1 ð13Þ

F4 ¼ f0
f2

h
Aðkþ1Þ þf0 f1�

f2

h

� �
Ak�F2�F1�F3 ð14Þ

Fm�1 ¼ f0f3B kþ1ð Þ=h2
þf0ðhf2�f3ÞBk=h2

ð15Þ

Fm ¼
f0ðhf2�f3ÞBðkþ1Þ

h2
þ

f0ðh
2f1�2hf2þf3ÞBk

h2
ð16Þ

where f1, f2, f3, f4 and f5 in Eqs. (11–16) can be expressed using
the following forms:

f1 ¼

Z h

0
e�A0ede ð17Þ

f2 ¼

Z h

0
e�A0eede ð18Þ

f3 ¼

Z h

0
e�A0ee2de ð19Þ

f4 ¼

Z h

0
e�A0ee3de ð20Þ

f5 ¼

Z h

0
e�A0ee4de ð21Þ

All of forms can be evaluated by f0 in Eq. (10) using the
following equations:

f1 ¼A0
�1
ðI�f0

�1
Þ ð22Þ

f2 ¼A0
�1
ðf1�hf0

�1
Þ ð23Þ

f3 ¼A0
�1
ð2f2�h2f0

�1
Þ ð24Þ

f4 ¼A0
�1
ð3f3�h3f0

�1
Þ ð25Þ

f5 ¼A0
�1
ð4f4�h4f0

�1
Þ ð26Þ

Then Eq. (9) is expressed using matrix form

Ykþ1 ¼DkYk ð27Þ

ðI�F1Þ
�1
ðF0þF2Þ ðI�F1Þ

�1F3 ðI�F1Þ
�1F4

I 0 0

0 I 0

0 0 I

^ ^ ^

0 0 0

0 0 0

2
666666666664
� � � 0 ðI�F1Þ

�1Fm�1 ðI�F1Þ
�1Fm

� � � 0 0 0

� � � 0 0 0

� � � 0 0 0

& ^ ^ ^

� � � I 0 0

� � � 0 I 0

3
777777777775

DK

Ykþ1 ¼ xkþ1 xk xk�1 � � � xk�mþ1

h iT

During one period, the Ym at time t¼T can be expressed by Y0

at time t¼0 using

Ym ¼Dm�1Dm�2Dm�3 � � �D0Y0 ð28Þ

Finally stability lobes can be predicted using transformation
matrix during one period based on Floquet theory. The transfor-
mation matrix during one period D is

D¼Dm�1Dm�2Dm�3 � � �D0 ð29Þ

If (I�F1) has no inverse matrix, then the Moore–Penrose
generalized inverse matrix is used as substitution [17].

Q. Quo et al. / International Journal of Machine Tools & Manufacture 62 (2012) 61–6662



Download English Version:

https://daneshyari.com/en/article/781801

Download Persian Version:

https://daneshyari.com/article/781801

Daneshyari.com

https://daneshyari.com/en/article/781801
https://daneshyari.com/article/781801
https://daneshyari.com

