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a b s t r a c t

A new procedure for determining natural frequencies and mode shapes of a system of elastically con-
nected multiple rotating tapered beams is presented through a differential transform method. These
identical double tapered beams are assumed to rotate at a constant speed and their deformation is
obeying the Timoshenko beam theory. The motion of the system is described by a coupled set of 2n
partial differential equations. A substantial change of variables is employed to uncouple the governing
differential equations. Thereafter, a new equivalent system of n decoupled Timoshenko beams is formed
where each beam appears elastically connected to the ground, resulting to a bunch of similar equations.
The inverse transform is applied to extract the solution of the original system in terms of the original
variables. The results are validated against those reported in the literature and then the effects of the
rotational speed, hub radius, taper ratios, rotary inertia, shear deformation, slenderness ratio and elastic
layers stiffness coefficients on the natural frequencies are discussed. The natural frequencies are in
excellent agreement with the reported results.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The determination of the dynamic characteristics of rotating
beams is of great importance in the process of designing a mul-
titude of engineering components such as turbine blades, com-
pressor blades, propellers, helicopter rotors, long and flexible
rotating space booms, robot manipulators and spinning space
structures. In case the dimensions of the beam cross-section are
comparable to that of the beam length or obtaining higher modes
are required, adopting the Timoshenko beam theory that accounts
for rotary inertia and shear deformation is recommended instead
of Euler–Bernoulli's model.

Banerjee [1] developed the dynamic stiffness matrix of a cen-
trifugally stiffened Timoshenko beam and carried out a free
vibration analysis. Raffa and Vatta [2] investigated the Lagrangian
formulation of a continuous, axisymmetric rotating Timoshenko
beam. Du et al. [3] applied a convergent power series expression to
obtain the natural frequencies and mode shapes of rotating
Timoshenko beams. Wang et al. [4] extended Galerkin's method
for rotating beam vibrations using Legendre Polynomials. The in-
plane and out-of-plane free vibrations of a rotating Timoshenko

beam are analyzed by means of a finite element technique by
Yokoyama [5]. Lee and Kuo [6] studied the upper bound of the
fundamental bending frequency of a rotating uniform Timoshenko
beam with a general elastically restrained root through applying
Rayleigh's principle. Curti et al. [7] proposed an analytical proce-
dure, based on the dynamic stiffness method for studying rotor
dynamics problems. Auciello and Ercolano [8] proposed a dynamic
investigation method for the analysis of Timoshenko beams which
takes into account the shearing deformation and the rotary inertia.
Banerjee and Sobey [9] derived the mass and stiffness matrices of
rotating twisted and tapered Timoshenko beams adopting stan-
dard finite element methods. Rao and Gupta [10] derived the
stiffness and mass matrices of a rotating twisted and tapered beam
element to find the natural frequencies and mode shapes of beams
in the bending–bending mode of vibration. Bazoune et al. [11]
adopted the finite element method to investigate the in-plane and
out-of-plane modes of free vibration of a tapered Timoshenko
beam mounted on the periphery of a rotating rigid hub. The
dynamic stiffness method for the free vibration of a symmetric
non-uniform Timoshenko beam is presented by Leung and Zhou
[12]. Lee and Lin [13] studied bending vibrations of rotating non-
uniform Timoshenko beams with an elastically restrained root.
Rossi and Laura [14] investigated numerically the vibration of a
linearly tapered Timoshenko beam. Yardimoglu [15] developed a
new finite element model and used it for transverse vibrations of
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rotating tapered Timoshenko beams with rectangular cross-
section. Zhu [16] derived the equations of motion by adopting an
assumed mode method to investigate the free vibration of a
rotating double-tapered cantilever Timoshenko beam subject to
flapwise transverse excitations.

A multi-beam system, consisting of elastically connected mul-
tiple parallel beams, can exhibit important applications in several
fields of civil and mechanical engineering. Kukla [17] studied the
problem of free vibration of two axially loaded beams connected
by translational springs. Oniszczuk [18] studied the free vibration
of two parallel simply supported beams continuously joined by a
Winkler elastic layer through the Euler–Bernoulli theory. The exact
theoretical general solutions of undamped forced vibrations for a
simply supported double-beam system are determined by
Oniszczuk [19]. Vu et al. [20] presented a unique yet simple
method of obtaining the exact solution for the forced vibration of a
damped double Euler–Bernoulli beam system subject to harmonic
excitation. Abu-Hilal [21] studied the dynamic response of a
double-beam system traversed by a constant moving load. Stoja-
novic et al. [22] considered the free transverse vibration and
buckling of a double-beam continuously joined by a Winkler
elastic layer under compressive axial loading with the influence of
rotary inertia and shear. Simsek and Cansiz [23] studied the
dynamic responses of an elastically connected functionally graded
double beam system carrying a harmonic load moving at constant
speed. Stojanovic et al. [24] investigated a general procedure for
the determination of the natural frequencies and buckling load for
a set of beams under compressive axial loading modeled by
Timoshenko and high-order shear deformation theory. In order to
deal with the complexity caused by the coupling of the equations
of motion in a multiple beams system, an original change of
variables is applied by Ariaei et al. [25] to uncouple the equations
of motion, making them efficiently solvable for different static/
dynamic moving loads.

Partial differential equations are often used to describe engi-
neering problems, the analytical solutions of which are often dif-
ficult to establish. As a result, approximate numerical methods
such as finite element, finite difference, and boundary element are
ultimately preferred [26]. However, in spite of the advantages of

these available methods and their relevant general computer
codes, the analytical and semi-analytical solutions are more
appropriate due to their implication in the physics of the problem
and their convenience in parametric studies. Considering the
advantages of semi-analytical solutions, the differential transform
method, DTM, is adopted in this study. In the available literature,
there are several studies that have adopted DTM to deal with
linear and nonlinear initial value problems, eigenvalue problems,
ordinary and partial differential equations, etc. The DTM was first
introduced by Zhou [27] in solving linear and nonlinear initial
value problems in electrical circuit analysis. Chen and Ju [28]
adopted DTM to predict the advective–dispersive transport pro-
blems. Arikoglu and Ozkol [29] extended DTM to solve the integro-
differential equations. Catal [30] performed analysis of free
vibration of beams on elastic soil adopting DTM. Ozdemir Ozgu-
mus and Kaya [26] studied free vibration analysis of a rotating,
double tapered Timoshenko beam featuring coupling between
flapwise bending and torsional vibrations. Free vibration analysis
of a rotating Timoshenko beam by applying DTM is investigated by
Kaya [31]. Ozdemir Ozgumus and Kaya [32,33] performed free
vibration analysis of a rotating tapered and double-tapered
Timoshenko beam subject to flapwise bending vibration by
adopting DTM. Rajasekaran [34] studied the free bending vibration
of rotating axially functionally graded (FG) Timoshenko tapered
beams with different boundary conditions adopting differential
transform method and differential quadrature element method of
lowest order. In addition to the variety of the cases where DTM can
be applied, its simplicity and accuracy in calculating the natural
frequencies and plotting the mode shapes makes it outstanding
among many other methods.

All the referenced articles have considered one rotating tapered
beam or a system of elastically connected non-rotating beams
with a constant cross section. The contribution of this article is to
consider a multiple tapered beams system rotating at a constant
rotational speed. Considering n elastically connected beams, this
proposed method involves a change of variables enabling the
separation of a set of 2n differential equations into independent
equations and to extend the previous work of the author [25]
where non-rotating beams with constant cross section are

Nomenclature

A cross-sectional area
b0 beam breadth at the root section
bL beam breadth at point x¼L
cb breadth taper ratio
ch height taper ratio
E Young's modulus
h0 beam height at the root section
hL beam height at point x¼L
Iy second moment of inertia about y-axis
k normal stiffness coefficient per unit length of

coupled system
k dimensionless normal stiffness coefficient per unit

length of coupled system
kθ rotational stiffness coefficient per unit length of

coupled system
kθ dimensionless rotational stiffness coefficient per unit

length of coupled system
K shear correction factor
KAG shear rigidity
L beam length
r inverse of slenderness ratio

R hub radius
s shear deformation parameter
t time
T(x) centrifugal force
T dimensionless centrifugal force
x longitudinal coordinate
y flapwise bending displacement
α normal stiffness coefficient per unit length of

decoupled system
α dimensionless normal stiffness coefficient per unit

length of decoupled system
β rotational stiffness coefficient per unit length of

decoupled system
β dimensionless rotational stiffness coefficient per unit

length of decoupled system
δ dimensionless hub radius
θ rotation angle due to bending
ρ density of the beams material
ρA mass per unit length
ω circular natural frequency
ω dimensionless natural frequency parameter
Ω constant rotational speed
Ω dimensionless rotational speed parameter
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