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a b s t r a c t

Dynamic stability of viscoelastic rectangular plates under a uniformly distributed tangential follower load
is studied. Two sets of boundary conditions are considered, namely, clamped in one boundary and free in
other boundaries (CFFF) and two opposite edges simply supported and other two edges free (SFSF). By
considering the Kelvin–Voigt model of viscoelasticity, the equation of motion of the plate is derived. The
differential quadrature method is employed to obtain the numerical solution and it is verified against
known results in the literature. Numerical results are given for the real and imaginary parts of the
eigenfrequencies to investigate the divergence and flutter instabilities. It is observed that the type of
stability differs for CFFF and SFSF plates indicating the strong influence of the boundary conditions on the
dynamic stability of viscoelastic plates. In particular it is found that CFFF plates undergo flutter instability
and SFSF plates divergence instability. One consequence is that SFSF plates become unstable at a load less
than the load for CFFF plates as the effects of viscoelasticity as well as the aspect ratio are found to be
minor for SFSF plates.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamic stability of systems such as beams, plates, shells,
pipes conveying fluid and rockets subject to follower forces has
been studied extensively. Plate structures are of importance in
diverse fields of technology like aeronautics, automotive design
and offshore structures, and as a result substantial work has been
performed on their stability under nonconservative loads. It has
been observed by Herrmann [1] that the load parameter has a
great effect on the stability of an elastic system subjected to a
nonconservative force. By considering a cantilever plate subjected
to biaxial subtangential loading, Farshad [2] studied the effect of
load parameter on dynamic stability. Influence of aspect ratio on
the stability of a plate subjected to conservative and non-
conservative forces was studied by Adali [3]. Various effects on
dynamic stability of rectangular plates have been investigated in
Leipholz and Pfent [4], Kumar and Srivasta [5], Higuchi and Dowell
[6], Zuo and Schreyer [7], Kumar et al. [8], Kim and Park [9], Kim
and Kim [10] and in Jayaraman and Strusthers [11].

More recently dynamic stability of viscoelastic structures has
been the focus of a number of publications. Stability of viscoelastic
columns under follower forces has been studied by Langthjem and
Sugiyama [12], Darabseh and Genin [13] and Zhuo and Fen [14]. The

corresponding work for viscoelastic plates is given in Eshmatov [15]
for follower forces, in Wang et al. [16], Wang and Zhou [17] for
uniformly tangential and in Robinson and Adali [18] for triangularly
distributed tangential follower forces. Robinson [19] took non-
linearity and tangential follower forces into account for simply
supported plates, and Wang et al. [20] the effect of piezoelectric
layers for viscoelastic plates with a combination of simple and
clamped supports. Despite the increasing attention on the stability
of viscoelastic plates subject to follower forces, the boundary con-
ditions which appeared in the literature so far include only the
clamped and simply supported cases [16,17,19,20]. It is noted that
the main difference in the nonconservative stability of viscoelastic
columns and plates is that the formulations for the two-
dimensional structures lead to governing equations expressed in
the complex domain leading to complex eigenvalue problems.

A rectangular plate may experience divergence or flutter
instability depending on the boundary conditions and quite often
plates with free boundaries are employed in practice. In the pre-
sent study, the stability of rectangular viscoelastic plates subject to
a uniformly distributed tangential follower force and free bound-
ary conditions is studied using the Kelvin–Voigt model of viscoe-
lastic behavior. In particular dynamic stability of viscoelastic plates
with CFFF and SFSF boundary conditions is established where C, F
and S stand for clamped, free and simply supported boundary
conditions, respectively. Free boundary conditions are experienced
in many engineering applications indicating the importance of
studying the dynamic stability for these cases. In the present
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study, differential quadrature method [19,21] is employed to solve
the governing equation which is expressed in the complex domain
using Laplace transformation. Previously the differential quad-
rature method was applied to nonconservative stability in Marzani
et al. [22].

In Section 2, the equations governing the vibrations of non-
conservatively loaded viscoelastic plates are established using
Laplace transformation following the approach implemented in
Wang et al. [16], Wang and Zhou [17] and Wang et al. [23]. In
Section 3 the differential quadrature method is implemented to
discretize the equation of motion and the boundary conditions.
This is followed by the verification of results in Section 4 and
numerical results in Section 5. Numerical results are given to
investigate the divergence and flutter instabilities for CFFF and
SFSF plates by way of plotting the real and imaginary parts of the
eigenvalues with respect to the follower load. The effects of the
aspect ratio and viscoelastic constant on stability are also studied.
Finally, Section 6 is devoted to concluding remarks.

2. Equation of motion for viscoelastic plate

We consider a thin rectangular plate of dimensions a� b and
thickness h with Young's modulus of E, Poisson's ratio ν and
density ρ. The Cartesian coordinate system x; y; z which has its
origin at mid-thickness is shown in Fig. 1. Using the Kirchhoff plate
theory, the displacements u; v;w along x, y and z directions,
respectively, are given by

u¼ �zψ x; v¼ �zψ y; w¼wðx; y; tÞ ð1Þ

where the angles of rotation ψ x and ψ y are related to the trans-
verse displacement w through the relations

ψ x ¼
∂w
∂x

; ψ y ¼
∂w
∂y

ð2Þ

The linear strain–displacement relations are given by

εx ¼ �z
∂2w
∂x2

; εy ¼ �z
∂2w
∂y2

; εxy ¼
γxy
2

¼ �z
∂2w
∂x∂y

ð3Þ

where εx and εy are the normal strain components, and γxy is the
shear strain component.

In the present study the plate material is taken as viscoelastic
of the Kelvin–Voigt type. The constitutive equations for this case
can be written as in Refs. [16–18, 20].

sij ¼ 2G eijþ2 η _eij ð4aÞ

σii ¼ 3Kεii ð4bÞ
where K , η, G are bulk modulus, viscoelastic coefficient and shear
modulus, respectively. They can be expressed as K ¼ E=3ð1�2νÞ
and G¼ E=ð1þ2νÞ in terms of E and ν. The quantities sij and eij are,
respectively, the deviatoric tensors of stress and strain while sii
and σii stand for the spherical tensors of strain and stress. The
bending moments Mx, My and twisting moments Mxy, Myx are
given by:

Mx ¼
Z h=2

�h=2
zσxdz; My ¼

Z h=2

�h=2
zσydz ð5aÞ

Mxy ¼
Z h=2

�h=2
zσxydz; Myx ¼

Z h=2

�h=2
zσyxdz ð5bÞ

where σx and σy are the normal stress components, σxy and σyx are
the shear stress components. The plate is subject to a uniformly
distributed tangential follower force qt as shown in Fig. 1. The
equation governing the vibrations of the plate under the dis-
tributed follower force can be written as

∂2Mx

∂x2
þ2

∂2Mxy

∂x∂y
þ∂2My

∂y2
�qtða�xÞ∂

2w
∂x2

�ρh
∂2w
∂t2

¼ 0 ð6Þ

Following the methodology employed in [16] and [17], Laplace
transformations of Eqs. (4)–(6) are performed. Carrying out the
inverse Laplace transformations of the resulting equations [24],
the differential equation governing the vibration of the non-
conservative viscoelastic rectangular plate is obtained as

h3

12
A3þA4

∂
∂t
þA5

∂2

∂t2

� �
∇4wþqtða�xÞ A1þA2

∂
∂t

� �
∂2w
∂x2

þ A1þA2
∂
∂t

� �
∂2w
∂t2

¼ 0 ð7Þ

where

A1 ¼ 3Kþ4G; A2 ¼ 4η; A3 ¼ 4Gð3KþGÞ; A4 ¼ 4ηð2Gþ3KÞ;
A5 ¼ 4η2 ð8Þ
and

∇4w¼ ∂4w
∂x4

þ2
∂4w

∂x2∂y2
þ∂4w

∂y4
ð9Þ

Introducing the dimensionless variables

X ¼ x
a
; Y ¼ y

b
; w¼w

h
; λ¼ a

b
ð10aÞ

q¼ 12qta3ð1�ν2Þ
Eh3

; τ¼ th
a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

12ρð1�ν2Þ

s
; H¼ ηh

a2E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

12ρð1�ν2Þ

s

ð10bÞ
the governing Eq. (7) can be rewritten as

1þc1
∂
∂τ

þc2
∂2

∂τ2

� �
∇4wþqð1�XÞ 1þc3

∂
∂τ

� �
∂2w
∂X2 þ 1þc3

∂
∂τ

� �
∂2w
∂τ2

¼ 0

ð11Þ
where τ is dimensionless time, H is dimensionless delay time of
the material, and

c1 ¼
4ð2�νÞð1þνÞ

3
H; c2 ¼

4ð1�2νÞð1þνÞ2
3

H2; c3 ¼
4ð1�2νÞð1þνÞ

3ð1�νÞ H

ð12Þ
are real constants which depend on the delay time H, and

∇4w¼ ∂4w
∂X4 þ2λ2

∂4w
∂X2∂Y2þλ4

∂4w
∂Y4 ð13Þ

The solution of Eq. (11) is expressed in the form

wðX;Y ; τÞ ¼WðX;YÞexpðjωτÞ ð14Þ
where j¼

ffiffiffiffiffiffiffiffi
�1

p
and ω is the dimensionless frequency which is in

general a complex number. Substituting Eq. (14) into Eq. (11), one
obtains the differential equation

1þc1jωþc2j
2ω2

� �
∇4Wþqð1�XÞð1þc3jωÞ∂

2W

∂X2 þð1þc3jωÞj2ω2 ¼ 0

ð15Þ

z

y
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h
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a

Fig. 1. Viscoelastic plate subject to distributed tangential follower force qt .
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