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a b s t r a c t

One of the most important reasons that give rise to the extraordinary behaviors of nanostructures is the
free surface energy. In the current investigation, a size-dependent shell model is introduced which has an
excellent capability to take surface energy effects into account. To this end, Gurtin–Murdoch elasticity
theory is implemented into the classical shell theory. Using virtual work's principle, the non-classical
governing differential equations related to the cylindrical nanoshell subjected to axial compressive load
are derived. Subsequently, a boundary layer theory is extended to solve the problemwith considering the
effects of surface free energy in addition to the nonlinear prebuckling deformations and the large
postbuckling deflections. Finally, a solution methodology based on a two-stepped perturbation technique
is put to use in order to obtain the size-dependent critical buckling loads and related postbuckling
equilibrium paths corresponding to different surface properties and various sets of thermal environ-
ments. It is found that for all sets of thermal environment, the surface free energy has significant
influence on the postbuckling strength of nanoshell. Also, it is seen that thermal environment causes to
decrease the both critical buckling load and critical end-shortening, but it has a negligible influence on
the value of minimum postbuckling load.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Nanostructures such as nanobeams, ultra thin plates (nano-
films), nanoshells and etc have attracted much attention from the
scientific community due to their considerable enormous physical,
mechanical, and electrical properties [1–4]. Nanoshells are one of
the gifts by nanotechnology for various applications. For example,
nanoshell biosensors work by emitting a signal that is character-
istic of the virus, toxin, or bacterial to be measured, thus identi-
fying the presence or absence of the material [5]. To achieve more
effective and better diagnostic and/or therapeutic goals, nano-
shells can be conjugated to antibodies, oligonucleotides fluor-
ophores, targeting ligands, polymers, therapeutic agents, and
radioisotope [6].

At this submicrion size, the behavior of structures affected by
various parameters known as size-effects. Surface stress effect is
one of these effects through high surface to bulk ratio of nanos-
tructures that causes to exhibit different behaviors compared to
the conventional structures. There are different investigations in
which the size-dependant responses of various types of nanos-
tructures have been studied [7–10].

The surface energy effect can be easily observed at the atomic
scale, and this object has been clearly indicated and explained [11–
13]. This phenomenon can be explained as the atoms at or near a
free surface have different equilibrium requirements than the
atoms have in the bulk of the material because of different
environment conditions. This difference causes excess surface
energy as a superficial energy term since a surface can be inter-
preted as a layer to which certain energy is attached [14].

Modified continuum models have been the subject of much
attention in nanomechanics due to their computational efficiency
and lesser complexity which can produce accurate results com-
parable to the atomistic models ones [15–29]. Gurtin and Murdoch
[30,31] developed a theoretical framework based on the con-
tinuum mechanics including the effects of surface free energy, in
which the surface is simulated as a mathematical layer of zero
thickness with different material properties for the underlying
bulk which is completely bonded by the membrane. Gurtin–
Murdoch elasticity theory has the capability to incorporate the
effects of surface free energy into the mechanical response of
nanostrustures which has been applied in many studies conducted
for various problems about mechanical behavior of the structures
at nanoscale.

Wang and Feng [32] and Abbasion et al. [33] investigated the
free vibration response of microsclae beam including surface
effects on the basis of Euler–Bernoulli and Timoshenko beam
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theories, respectively. Tian and Rajapakse [34] implemented the
surface elasticity theory to examine the surface-interface stress
effects on the elastic field of an isotropic matrix with a nanoscale
elliptical inhomogeneity. Lu et al. [35] presented a generalized
refined theory incorporating the influence of surface stress for
functionally graded films based on Gurtin–Murdoch elasticity
theory. Zhao and Rajapakse [36] proposed the axisymmetric
solutions for an elastic layer subjected to surface loading incor-
porating the effects of surface energy. Fu et al. [37] studied the
influences of surface energy on the free vibration and buckling
behavior of nanobeams in the both linear and nonlinear regimes
using Galerkin's technique. Ansari and Sahmani [38] analyzed the
bending and buckling behaviors of nanobeams including the effect
of surface stress corresponding to different beam theories. Ansari
and Sahmani [39] also predicted the free vibration of rectangular
nanoplates based on surface elasticity theory. They implemented
Gurtin–Murdoch elasticity theory into the classical and first-order
shear deformation plate theories. Ansari et al. [40,41] predicted
the postbuckling characteristics of Euler–Bernoulli and Timosh-
enko nanobeams, respectively, with the presence of the surface
stress effects. On the basis of surface elasticity theory, Mouloodi
et al. [42] carried out the finite element implementation of free
vibration response of nanoplates considering surface stress effects.
Sahmani et al. [43] predicted the free vibration response of post-
buckled third-order shear deformable nanobeams based on sur-
face elasticity theory. Sahmani et al. [44] used Gurtin–Murdoch
elasticity theory to develop a non-classical beam model to study
the nonlinear forced vibrations of nanobeams including surface
effects. Sahmani et al. [45] examined the free vibration of post-
buckled circular higher-order shear deformable nanoplates incor-
porating the effect of surface free energy. Recently, Moheb-
shahedin and Farrokhabadi [46] demonstrated the effects of sur-
face free energy on the instability of NEMS tweezers and canti-
levers fabricated from conductive cylindrical nano-wires. Sahmani
et al. [47] studied the free vibration characteristics of postbuckled
functionally graded third-order shear deformable nanobeams
using surface elasticity theory.

In the present investigation, the nonlinear buckling and post-
buckling behavior of axially compressed cylindrical nanoshells
subjected to different thermal environments is studied including
the effects of surface free energy. An efficient size-dependent shell
model is developed based on Gurtin–Murdoch elasticity theory. A
boundary layer theory is employed considering simultaneously
the surface energy effects, the nonlinear prebuckling deformations
and the large postbuckling. At the end, the critical buckling loads
and related equilibrium postbuckling paths are obtained using a
two-stepped singular perturbation technique.

2. Preliminaries

A cylindrical nanoshell with the length L, thickness h, and mid-
surface radius R is considered as depicted in Fig. 1. The nanoshell
includes a bulk part and two additional thin surface layers (inner
and outer layers). For the bulk part, the material properties are
Young's modulus E and Poisson's ratio ν. The two surface layers are
assumed to have surface elasticity modulus of Es, Poisson's ratio νs
and the surface residual tension τs. According to a curvilinear
coordinate system with its origin located on the middle surface of
nanoshell, coordinates of a typical point in the axial, circumfer-
ential and radial directions are denoted by x, y and z, respectively.
Now, based on the classical shell theory, the displacement field can
be expressed as

ux x; y; zð Þ ¼ u x; yð Þ�z
∂wðx; yÞ

∂x
ð1aÞ

uy x; y; zð Þ ¼ v x; yð Þ�z
∂wðx; yÞ

∂y
ð1bÞ

uz x; y; zð Þ ¼w x; yð Þ ð1cÞ
in which u, v and w represent the middle surface displacements

Following the von Karman–Donnell-type kinematics of non-
linearity [48], which is on the basis of this stipulation that the
thickness of the shell h, is remarkably small in comparison with its
radius of curvature R, the kinematical strain–displacement rela-
tionships can be expressed as below
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where εMxx; ε
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xy stand for mechanical and thermal

strain components, respectively. Also, ε0xx; ε
0
xx; γ

0
xy denote the strain

components of the middle surface, κxx; κyy; κxy are the curvature
components of nanoshell, α and ΔT represent the thermal
expansion coefficient and temperature change, respectively.

Moreover, the constitutive relations are as follow
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in which λ¼ Eν
1�ν2ð Þ, μ¼ E

2 1þνð Þð Þ are Lame's constants.

The classical models of continuum mechanics do not have the
capability to consider the atomic features of the nanostructures.
However, according to the simplicity and computational efficiency
of continuum mechanics, different modified continuum models
have been developed to incorporate size-effects into the conven-
tional continuum approach. Gurtin–Murdoch continuum elasticity
is one of the most efficient theories to incorporate surface stress
effect into analysis of mechanical behaviors of structures at
nanoscale. According to this non-classical continuum theory, the

Fig. 1. Schematic view of a cylindrical nanoshell with surface layers.
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