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a b s t r a c t

Dynamic behaviour of simply supported uniform beams subjected to a single moving point load is
analysed in this paper. A simple closed-form expression for free vibration response, valid for both lightly
and heavily damped beams, is formulated. A detailed investigation of the cancellations of free responses
is carried out. New interpretations for the cancellation mechanism, from the perspectives of free
vibration amplitude and phase angle, are presented. Expressions for cancellation speed ratios are
formulated based on the initial velocity and displacement conditions for free vibration. The effect of
damping on the cancellations of free responses is also studied.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamic analysis of beams under moving loads has been an
active area of research for the past several years. Structural
integrity of bridges has been a cause of concern to engineers,
especially, when traversed by high speed trains. With modern
transportation becoming faster and heavier, this area of research
continues to be an interesting and challenging one.

Numerous works on vibration of simply supported beams
under moving loads are found reported in the literature. Fryba
[1] conducted a comprehensive study on the vibrations of simply
supported uniform beams due to the excitation of different types
of moving loads. A discussion on the fundamental aspects of
moving load problem was presented and a comparative study of
the analytical and finite element solutions was given by Olsson [2].
The vertical acceleration response of a simple beam subjected to
the passage of a single load was studied by Yau et al. [3] by
assuming light damping (ζo0:03). Law et al. [4] analysed the
identification of moving force in both time and frequency
domains. Lu et al. [5] reported that the dynamic response of a
railway bridge to single load excitation is mainly influenced by the
frequency characteristics, the so-called driving frequencies, of the
train load.

Resonances and cancellation phenomena in beams under moving
loads have been studied and reported by several researchers. Yang

et al. [6] illustrated that a good design of railway bridges is the one
that ensures suppression of the first resonance at all times by varying
either the span length or the cross-section and showed that when the
span to car length ratio equals 1.5 or 0.5 no resonant response will be
induced on the beam. Savin [7] analysed the dynamic amplifications
due to forced and free vibrations and showed that for some optimal
span lengths corresponding to the wavelengths of the load, the
responses can be cancelled theoretically. Yang et al. [8] studied
analytically and showed that elastically supported beams have lower
resonant (real) speeds compared to simply supported beams but their
cancellation (real) speeds are close to those of beams with simple
supports. They also showed that, at resonance speeds, damping does
not affect the response in beams with elastic bearings. Yau et al. [9]
illustrated that at cancellation condition, the residual responses caused
by all previous loads which have traversed the beam will be
suppressed and the response will be decided solely by the loads still
acting on the beam.

Xia et al. [10] investigated the resonance mechanisms and
conditions of train-bridge interaction and observed that the
resonance mechanism is affected by the span, lateral and vertical
stiffness of the bridge, axle arrangements and natural frequencies
of the vehicles. The resonant response of a steel girder bridge
traversed by high speed trains was investigated by Li et al. [11]
with and without considering vehicle–bridge interaction. Ju et al.
[12] analysed the resonant characteristics of multi-span bridges
and proposed that a suitable axial stiffness between two simple
beams will reduce the resonant vibrations at near resonance-
conditions. Cho et al. [13] studied the resonance and cancellations
mechanisms occurring in bridges subjected to high speed trains
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and arrived at the following conclusions: resonance is not related
to mode shape, whereas, cancellation depends on it. Euler–
Bernoulli beam model with various boundary conditions was
considered in the analysis and an optimal span length which
suppresses resonance was proposed. Yau et al. [14] showed that
resonant response can be induced in the bridge by a train within
the operating speed range and if the characteristic length, instead
of span length, is used for the continuous beam then the responses
of both the simple and continuous beams will be at their peaks.

An illustrative interpretation of the cancellation phenomenon
occuring in a beam under a single moving load, in terms of the
homogeneous and particular solutions, was given by Museros et al.
[15]. Pesterev et al. [16] predicted the speeds for which the
amplitudes of free vibration response of a simply supported beam
become minimal.

Xia et al. [17] showed that bridge damping has an influence on
the cancellation effect; cancellation efficiency will be reduced with
increase in damping. They reported two types of cancellation
phenomena, the first being due to a single load and the second
being related to the spatial intervals between the loads. Also, it
was shown that free vibration of a bridge induced by a single load
has inherent cancellations at some speeds and these are known as
the first cancellation conditions. A novel method of suppression of
resonance phenomenon of high speed railway bridges by inserting
size-adjusted vehicles into the existing train arrangement was
proposed by Shin et al. [18].

In most of the analyses, only lightly damped or undamped
beams are considered. But, it has been reported that the conven-
tional damping ratio of 5% used is too conservative for short span
bridges [1,19]. So, the assumption of light damping is not valid in
the case of bridges of short span.

In this paper, a simple and compact formula to determine the
free vibration responses of a uniform beam, applicable to both
lightly and heavily damped beams, is proposed for the first time.
Also, a thorough investigation of the cancellation phenomenon is
done and the effect of damping on the cancellation phenomenon is
predicted. Though similar studies have been presented by many
researchers in the past, a detailed description and interpretation of
the cancellation mechanism has not been found reported.

2. Uniform beam with a single moving point load

2.1. Forced vibration

The general equation of motion of a simply supported beam of
rectangular cross-section as shown in Fig. 1 traversed by a single
force P at constant speed v is given by

EI
∂4wðx; tÞ

∂x4
þc

∂wðx; tÞ
∂t

þμ
∂2wðx; tÞ

∂t2
¼ Pδðx�vtÞ ð1Þ

where E is the Young's modulus, I is the moment of inertia of the
cross-section, wðx; tÞ is the transverse deflection of the beam, c is
the damping coefficient, μ is the mass per unit length, δ is the Dirac
delta function and x is the distance from one support in the
direction of motion. L is the length of the beam and hu is its height.

Assuming the solution in the form of mode superposition, the
transverse deflection of the beam can be written as

wðx; tÞ ¼
X1
n ¼ 1

qnðtÞ sin
nπx
L

ð2Þ

where qn(t) represents the generalized coordinate for nth vibration
mode and sin ðnπx=LÞ, the corresponding mode shape.

Multiplying both sides of Eq. (1) by sin ðnπx=LÞ and integrating
from 0 to L, the generalised equation of motion of the beam is
obtained as

€qn ðtÞþ2ζnωn _qn ðtÞþω2
nqnðtÞ ¼

2P
μL

sin
nπvt
L

ð3Þ

where ωn
2 is the square of the natural frequency for nth mode given

by

ω2
n ¼

n4π4

L4
EI
μ

ð4Þ

and ζn is the corresponding damping factor. The normalised mid-
span deflection for toL=v, for zero initial conditions, is given by
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where Kn ¼Ωn=ωn is the non-dimensional speed and Ωn ¼ nπv=L is
the excitation frequency. Here, wstatic ¼ 2P=ðμLω2

1Þ ¼ 2PL3=ðEIπ4Þ≊
PL3=ð48EIÞ is the static deflection of the mid-span of the beam
where ω1, hereafter referred to as ω, is the fundamental natural
frequency of the beam.

2.2. Free vibration

Analysis of free vibration is important as it plays a major role in
determining the modal parameters such as damping. It helps to
identify the speeds with which the load (vehicle) should traverse
the beam (bridge) so that there are no responses due to free
vibration.

The free vibration response of the mid-span of the beam for
t4L=v is as follows:

qnðtÞ ¼ q0n cosωdntþ
_q0nþζnωnq0n

ωdn

� �
sinωdnt

� �
e� ζnωnt ð6Þ

where ωdn is the damped natural frequency, q0n, _q0n are the initial
displacement and initial velocity of the mid-span respectively.
These initial conditions are given by the displacement and velocity
values of forced responses at time t ¼ T ¼ L=v i.e., the moment the
load departs the beam.

q0n ¼ � Foe� ζnnπ=Kn

ω2
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Kn
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where Fo ¼ 2P=μL.
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Substituting the values of q0n and _q0n from Eqs. (7a) and (7b) inFig. 1. Simply supported uniform beam with a load P moving with velocity v.
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