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a b s t r a c t

Most previous work in anisotropic yield criteria has focused on describing the yield loci using a
continuous function, which is ideal when applying to materials with limited anisotropy. But in practice,
many widely used metals such as aluminum alloys and magnesium alloys show strong features in
different crystallographic directions, which cause increasing undetermined coefficients and more
complex functional forms. Furthermore, with development of new materials, existing yield criteria
shall meet challenges in feasibility because a continuous function is expected to predict only a few kinds
of yield surface shapes. To extend the anisotropic yield criteria family, an interpolation-type orthotropic
yield function for plane stress is proposed in this paper, in which the physical meaning of coefficients is
directly defined. The proposed interpolation-type orthotropic yield function reproduces with great
accuracy the anisotropic behaviors under biaxial tension and uniaxial tension/compression, including
but not limited to the varying yield stress and R-coefficients with loading direction and tension/
compression asymmetry. Moreover, comparing the predictions of the yield loci by the interpolation-type
orthotropic yield function with those by classical yield functions, it is shown that the proposed function
gives the best agreement with experimental data of FCC, BCC and HCP sheet metal samples.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Since Hill's fundamental work in 1948 [1], many types of
anisotropic yield functions have been proposed to describe the
behavior of sheet metals. Hill48 model has been implemented into
several FE element codes because of its user-friendly formulation.
However, since the anisotropy under biaxial tension is not con-
sidered, Hill48 has been found to overestimate the biaxial yield
stress for materials like steels (R41), while underestimate the
biaxial yield stress for materials like aluminum alloys (Ro1). To
improve the simulation performance, Hill79 [2], Hill90 [3], and
Hill93 [4] models have been published subsequently, each being a
modification based on Hill48. Barlat and Lian [5] proposed Yld89
by extending Hosford's [6] non-quadratic isotropic function to
describe in-plane anisotropy, which provides a better predictabil-
ity than Hill48 in modeling the earing. Afterwards, a series of yield
functions known as Yld91 [7], Yld94 [8], Yld96 [9], Yld2000-2D
[10] and Yld2004 [11] have been developed by Barlat and his
coworkers. In addition to the work of Barlat, Banabic et al.
proposed BBC2000 model [12] based on Yld89. Further modifica-
tions of BBC2000 were found in BBC2002 [13], BBC2005 [14,15]
and BBC2008 [16]. Compared with Hill's yield criteria, the Barlat

series and BBC series performed better in predicting the aniso-
tropic coefficients and biaxial flow stress, which is at cost of
increasing the complexity of the yield function. Furthermore, since
all the criteria mentioned above are axisymmetric in shape, they
are not suitable in describing the tension/compression flow stress
asymmetry occurred in hexagonal close packed (HCP) metals such
as magnesium alloys [17] and titanium alloys [18]. Concerning this
issue, the Cazacu series have been proposed [19,20].

Despite the difference in equation form, all the above mentioned
yield criteria are continuous functions, the undermined parameters of
which are in accordancewith the number of anisotropic characteristics
involved [21]. Naturally, to further improve the prediction accuracy,
the function is bound to be more complex. This tendency could be
seen by comparisons both within each yield function series and
between different series. However, with more materials with strong
anisotropy being developed, continuous yield functions would be too
complex for coefficient determination and numerical computation.
Vegter and van den Boogaard proposed an interpolation-type yield
function based on the second order Bézier curves [22]. It is demon-
strated that the interpolation method is promising in accurately
modeling the mechanical behavior of highly anisotropic sheet metals.

In this paper, an interpolation-type orthotropic yield criterion for
plane stress has been proposed. The Hermite interpolation, involving
both the function value and its first order derivative in a simple form,
is used as interpolation function to describe the anisotropic yield
behavior in the quasi-π plane. In this way, the anisotropy shown in
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tension and compression along any crystallographic axes could be
taken into account without any increase in function complexity.

2. The interpolation-type orthotropic yield function

2.1. Basic concepts and assumptions

As an initial step of the research, the yield function postulated
in this paper is limited to the condition in which the principal
stresses act along the anisotropic axes and no shear stress
component in the anisotropic coordinate system exists. In framing
the criterion, general propositions used in the classical constitutive
theory are kept. Specifically, assumptions adopted are as follows:

1) The yield surface and its normal vector are varying continu-
ously. Therefore it is reasonable to approximate the yield locus
using an interpolation method, and prediction accuracy could
be improved by increasing interpolation points.

2) Yielding behavior is fully determined by the deviatoric stress state,
and the effect of hydrostatic stress on yielding is neglected.

3) The plastic strain increment vector is normal to the yield
surface.

2.2. Stress and strain on the quasi-π plane

2.2.1. Yield stress on the quasi-π plane
Similar to the classical π plane, a quasi-π plane has been

adopted, in which each axis represents the deviatoric stress, as
schematically shown in Fig. 1, to demonstrate the deviatoric stress
state at yielding. For the sheet metal, the deviatoric stress in
rolling, transverse and normal direction, are denoted by the
component along 10, 20 and 30 axes or σ0

x, σ
0
y, and σ0

z in the quasi-
π plane. In plane stress condition, for a random yielding point pi
(the open star symbol in Fig. 1), the transformation matrix
between the direct stress vector ½σx;σy� and the deviatoric stress
vector ½σ0
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The magnitude of the deviatoric stress vector, denoted as radius
r on the quasi-π plane, is related to σ0

x, σ
0
yandσ

0
z by projecting r to

the three axes in the relationship as follows:
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The relationship between r and σ0can be rewritten as

r¼
ffiffiffi
2
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It is noteworthy that the expression in Eq. (3) is slightly
different from that in the well-acknowledged π plane, where the
radius rπ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ02
x þσ02

y þσ02
z

q
. So for distinction, the modified π plane

presented in this work is called quasi-π plane.
The angle of r with respect to the horizontal direction is

calculated as follows:

tan θ¼ 2σy�σxffiffiffi
3

p
σx

ð4Þ

Assuming the ratio of σx : σy ¼ α, Eqs. (3) and (4) are rewritten
as follows:

r¼ 2
3
U
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2�αþ1

p
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tan θ¼ 2�αffiffiffi
3

p
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Eqs. (5) and (6) give the definitions of radius and angle of the yield
locus on the quasi-π plane (shown in Fig. 1), both of which are
determined by the stress state at yielding. Specifically, under condi-
tions of uniaxial and biaxial tests with σx : σy ¼ 4 : 0, 4 : 1, 4 : 2, 4 : 3,
4 : 4, 3 : 4, 2 : 4, 1 : 4, 0 : 4, �4 : 0 and 0 : �4, the radii and angles,
calculated by Eqs. (5) and (6), are presented schematically in Fig. 1 by
black solid circles numbered as p1�p11, respectively.

2.2.2. Direction of plastic strain rate on the quasi-π plane
In the classical constitutive theory, the plastic strain rate space

and the stress space are superposed, and their deviatoric compo-
nents are also superposed on the π plane. When the material is
isotropic, yield locus on the quasi-π plane is circular and the
direction of plastic strain increment is in accordance with the
radial direction. However, in the case of anisotropic materials, the
radius is bound to be varied with directions and the direction of
plastic strain rate, determined by the normal direction to the yield
locus, is no longer parallel with the radial direction.

The state of the plastic strain rate of a random yield point i on
the principal plane and quasi-π plane is schematically illustrated
in Fig. 2. On the quasi-π plane shown in Fig. 2(b), the angle of oi

,

with respect to the horizontal direction, i.e. the polar angle, is θ.
And ω is the angle between the radial direction oq

,
and the normal

direction op
,

of the yield locus. Point i″is another yield point in the
vicinity of point i. The angle between oi

,
and oi″

,
is Δθ. Point i0 is

the intersection of arc ii0 and oi″
,
. When Δθ is close to zero, it can

be shown that Δii0i″ and Δiqp are similar triangles. It leads to
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Fig. 1. Schematic yield locus on quasi-π plane.
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