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a b s t r a c t

At a given temperature a balance between repulsive and attractive molecular forces determines liquid
density. As temperature is lowered, attractive forces increase, but eventually saturate and asymptote to a
near fixed value. At saturation, the attractive/repulsive force balance stabilizes the liquid density, which
thereafter becomes effectively temperature independent. Configurational entropy also saturates, but at a
much lower temperature. Once entropy begins to saturate, it converges to zero at absolute zero. There is
no second order phase transition nor is there a divergent temperature above absolute zero predicted for
glass relaxation phenomena. Using a phenomenological argument, it is shown that the relaxation time
for volume relaxation varies inversely with configurational entropy. Stoichiometric electron density is
proposed as a metric for repulsive force strength, which was determined at Tg and averaged 0:61±0:03
mol/cc for 15 polymers that contain oxygen and 0:53±0:02 mol/cc for 7 hydrocarbon polymers. Quali-
tatively, similar polymer liquids that pack to higher electron densities at a given temperature are ex-
pected to experience a glass transition earlier as temperature is lowered. For certain polymer types, the
glass transition appears to be an isoelectronic state.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Ever since the seminal work of Gibbs and DiMarzio (GD) [1], it
has been understood that repulsive forces appear to dominate the
glass transition and glass structure. The basic GD premise is the
number of ways molecules can randomly pack into a disordered
structure, which determines its configurational entropy, reaches a
limiting value as the glass transition is approached [1e5]. A hard
sphere fluid exemplifies this physical principle, as it appears to
undergo a glass transition at the Kauzmann density at a volume
fraction of 0.545 [6].

However, as is well known, the experimental glass transition is a
kinetic phenomenon that may occur well before this ideal “packing
limit” obtains. This observation motivated Adams and Gibbs [2] to
link GD thermodynamics to glass kinetics over 50 years ago. Their
basic idea was the reduction in configurational entropy increases
the size scale for cooperative molecular motion as the glass tran-
sition is approached, which slows down structural rearrangements.
This approach is still widely invoked today to describe glass
transformation kinetics [7e10].

In a previous publication [11], it was suggested that the glass

transition might also be a manifestation of an “energy saturation”
mechanism. At a given temperature above the glass temperature
and fixed pressure, a balance between repulsive and attractive
forces determines liquid density. Since the strength of attractive
interactions initially scale as 1=T , decreases in temperature increase
density. However, if attractive interactions are short-ranged,
attractive forces must eventually saturate at high densities.

Two important properties of the energy saturation model
developed herein will be advanced: Above the glass transition
temperature, liquid density is controlled by the equation of state
and varies linearly with temperature. When cooled, this linear
temperature behavior begins to breakdown, which is one signature
of a liquid-to-glass transition. Our primary thesis is that this de-
parture, which is cooling rate dependent, manifests configurational
energy saturation. Once configurational energy begins to saturate,
the equilibrium density begins to asymptote to a limiting value.
Even if cooled infinitely slowly tomaintain equilibrium, this density
departure from its linear temperature trajectory is expected.
However, the observed kinetics, embodied in the ability of the
equilibrium density to keep up with a given cooling rate, should be
controlled by the temperature gradient on the chemical potential. For
example, after a rapid temperature quench of dT , a liquid is in a
non-equilibrium state with its volume V displaced from its equi-
librium value of Veq. The thermodynamic driving force for volume
recovery (V/Veq) will be governed by the magnitude of the
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corresponding chemical potential displacement (displaced from its
equilibrium value meq at the quench temperature):

dm ¼
�
vm

vT

�
P
dT ¼ �S dT (1)

The corresponding relaxation time (t) for volume recovery for a
temperature quench or jump will vary as

t � 1
jdmj �

1
S

(2)

Volume relaxation requires configurational rearrangements so
the inverse dependence of the relaxation time on entropy, espe-
cially the configurational contribution to the entropy, becomes rate
controlling. During an isothermal volume contraction, the thermal
entropy remains fixed and only the configurational entropy (the
principle driving force) changes.

The cause and effect relationships are as follows: although
mediated by kinetics, the underlying root cause for the breakdown
of the linear density-temperature relationship is configurational
energy saturation as reflected in the equation of state. The ability of
liquid density to keep up with the cooling rate is governed by liquid
configurational entropy. Even after configurational energy satu-
rates, configurational entropy has not. At energy saturation multi-
ple configurations yield the same saturation energy. The
temperature where entropy begins to saturate (99% level) is well
below where energy begins to saturate at the 99% level.

The above phenomenological argument that glass transition
kinetics are controlled by entropy is superficially compatible with
the microscopic theory of Adam and Gibbs [2]. However, a number
of important differences exist between the AG kinetic adaption of
the Gibbs-DiMarzio model [1] and the QC chain model. With
regards to the latter: (1) There is no second order phase transition
underlying the glass transition. (2) There is no divergent temper-
ature above absolute zero predicted for glass relaxation phenom-
ena; the implication is that the temperature singularity at T∞ in the
empirical VFT relaxation equation is apparent, not real:

tðTÞ ¼ t0 exp
�

B
T � T∞

�
(3)

(3) The underlying cause for why density departs from temperature
linearity as the glass transition is approached differs. Configura-
tional energy saturation is not a property of the GDmodel nor is it a
property belonging to any model that uses a mean-field interaction
energy (van der Waals). (4) The essential hypothesis of the AG
model is that the reduction in configurational entropy increases the
size scale for cooperative molecular motion as the glass transition is
approached. The general thermodynamic approach expressed
above does not appeal to any specific molecular mechanism. In the
quench scenario, the dynamics of equilibration can be regarded as a
random thermal rearrangement of structure biased by attractive in-
teractions that favor configurations of higher density and lower
entropy.

Point (1) above is one that others have emphasized. It seems
quite possible that the entropy may just “bend over” and approach
a limiting value at absolute zero [12e14]. This is just what the
energy saturation model predicts. The excess configurational en-
tropy varies nearly linearly with temperature before it begins to
saturate and then “turns abruptly” and converges to zero at zero
temperature. Extrapolation of the linear behavior to zero temper-
ature defines an apparent non-zero Kauzmann temperature, TK
with the implication that T∞ ¼ TK. The absence of a true divergent
temperature has also received support from others [15e17].

In our previous publication [11], thermodynamics of energy

saturation were demonstrated for a square well (SW) fluid with
energetics treated in a quasi-chemical (QC) approximation. In
contrast, a mean-field treatment of this model does not yield en-
ergy saturation. In the present study, this model is extended to
polymers via a tangent hard sphere (HS) chain where each mono-
mer interacts with other monomers through a SW potential. A SW
potential has the form:

fðRÞ ¼
8<
:

∞ : R< s
�ε : s � R � ls
0 : R> ls

(4)

where s is the HS monomer diameter, and l scales the range of the
attractive interaction of strength �ε. Monomer-monomer ener-
getics are treated in a QC approximation illustrated in Fig. 1.

The structure of the paper is as follows: Sections 2-3 describe
the QC tangent HS chain model and its thermodynamic properties,
especially energy and entropy saturation. The 4th Section describes
the differences in mean-field and QC energetics relevant to the
concept of energy saturation, which is followed by Section 5 that
looks at the thermodynamic evidence for an ideal glass state. Sec-
tion 6 examines the excess entropy behavior of the model and
Section 7 explores how repulsive forces and electron density are
related.

2. Quasi-chemical approximation

Consider a tangent sphere chain of r HS monomers (aka r-mer
chain) attractively interacting with other monomers through a SW
potential (see Fig. 1). The maximum possible interaction energy per
chain is �rnmaxε and may involve both intermolecular and intra-
molecular monomer-monomer interactions. In a QC approxima-
tion, the probability Pn that n spheres are within the attraction

Fig. 1. Two-dimensional schematic of a tangent sphere chain illustrates the attractive
domains (gray annuli) of the 2 black spheres. These attractive shells have a volume of
8
�
l3 � 1

�
v0 where v0 ¼ ðp=6Þs3 is the HS volume. As illustrated, l ¼ 3=2 and yields an

attractive domain volume of 19v0. The white annuli around the 2 black spheres with
volumes 8v0 are the excluded volume regions where no other sphere center may enter.
The red sphere centers are in the attractive domains of the 2 black spheres and one red
sphere is in both domains. These red spheres might belong to other chains or to the
same chain, but the 2 blue spheres directly connected to the black spheres do not
contribute to the attractive interaction. The maximum number of spheres that can be
accommodated in an attractive domain is set at 10. When the 2 nearest-neighbor
connected spheres are added, the maximum packing density (hmax) around any
sphere equals 12/19 ¼ 0.632, which corresponds to the random close-packing value for
hard spheres [18,19].
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