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a b s t r a c t

In this work, an analytical solution for thermoelastic damping (TED) quality factor in beams based on
Timoshenko beam theory has been proposed along the lines of a previous analytical solution obtained by
Lifshitz and Roukes. Heat transfer in the axial direction of the beam was neglected while deriving the
analytical solution. A numerical approach using the spectral element method (SEM) was implemented
for obtaining the TED quality factor in a Timoshenko beam. Heat transfer in both the axial and thickness
directions was considered for obtaining the numerical solution. The two-dimensional heat conduction
problem was transformed into an one-dimensional problem by using a weighted residual technique.

Quality factors were obtained numerically using eigenfrequency analysis and energy approach. The
results from both analytical method and SEM were compared with the analytical models and three-
dimensional finite element solutions. The analytical solution based on Timoshenko beam model gave a
better result when compared to the analytical model based on the Euler–Bernoulli model. Numerical
solutions are in good agreement with both analytical results and three-dimensional finite element
results when the aspect ratio (L=h) is high. The numerical results were closer to the three-dimensional
solutions as thickness increased. It has been shown that heat transfer in the axial direction cannot be
ignored while computing quality factor attributable to TED in thick beams.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Thermoelastic damping (TED) is an important phenomenon in
case of structures which need to be considered in some specialized
environments. In large aerospace structures which need high
precision designing [1] and in structures of length scale in
micrometers like MEMS resonators and oscillators which operate
in vacuum or near vacuum, the TED needs to be quantified
accurately. In aerospace, aircraft and submarine structures, TED
is a favorable phenomenon which may help to suppress undesir-
able vibrations, flutter, etc. [2]. On the other hand, TED is detri-
mental in devices like MEMS oscillators and resonators where high
quality factors(Q) are desired [3]. The accurate evaluation of TED
can also be used for a priori estimation of other types of damping
like support loss and fluid damping from experimental data. From
an engineering design point of view, the estimation of TED of these
structural elements at the design phase is important for accurately
designing these elements to obtain the desired functionalities.

Since the stress and temperature fields are coupled in a
material, the temperature field changes when it is stressed [4]. If
the stress field has some inhomogeneities, there is inhomogeneity

in the temperature field as well. Fig. 1 shows a snapshot of the
distribution of temperature in a beam undergoing flexural vibra-
tion. This inhomogeneity in the temperature leads to heat transfer
from the hotter region to the colder region. By second law of
thermodynamics, this heat transfer leads to the generation of
entropy and loss of mechanical energy in the form of heat.

In a seminal work by Zener [5], the thermoelastic damping in a
beam was studied and an analytical formula for the TED quality
factor was derived. At the resonant frequency, Zener's equation
predicts the TED quality factor for a thin beam undergoing
transverse vibrations as

Q �1
TED ¼ Eα2T0

ρC
ωnτ1

1þ ωnτ1ð Þ2
ð1Þ

where ρ is the density, E is the Young's modulus, α is the linear
coefficient of thermal expansion, T0 is the equilibrium temperature
of the solid, C is the specific heat per unit mass, h is the thickness
of the beam, ωn is the resonant frequency and τ1 is the relaxation
time defined as

τ1 ¼
h2ρC

Π2k
: ð2Þ

Here k is the thermal conductivity.
Another widely used analytical model was proposed by Lifshitz

and Roukes [3]. The change in resonant frequency in the presence
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of TED is taken into account in this model, thereby improving
upon Zener's classical model. The equation for the TED quality
factor given by Lifshitz and Roukes (LR) is

Q �1
TED ¼ Eα2T0

ρC
6

ϑ2�
6

ϑ3

sinhϑ sinϑ
coshϑ cosϑ

� �
ð3Þ

where

ϑ¼ h

ffiffiffiffiffiffiffiffiffiffiffiffi
ωnρC
2k

r
: ð4Þ

There were similar attempts to quantify the TED in different
types of structures. Kinra and Milligan [6] developed a theory to
compute the energy lost by measuring the entropy generated in an
Euler–Bernoulli beam. De and Aluru [7] modified the Lifshitz and
Roukes model to accommodate higher order harmonics for ana-
lyzing the electrostatically actuated microbeams. All these analy-
tical models consider very thin beams and account only for heat
transfer that occurs through the thickness direction. The thermal
boundary conditions at the structural boundaries were also not
taken into account in those analyses. There have been two-
dimensional theories developed to accommodate these issues.
Shieh [8] studied the TED in Timoshenko beam with circular cross
section with simply supported boundary conditions. Shieh used
the 2-D heat conduction equation coupled with structural domain
and obtained the damping factors. Chadwick [9] extended Zener's
theory to 3-dimensional analysis of TED and obtained solutions in
the form of series expansion of eigenfunctions.

There have been several attempts to solve the TED problems in
different domains numerically. Prevost and Tao [10] used finite
element method to solve coupled thermoelastic problem. They
used second order heat conduction equation instead of the Fourier
equation. Prabhakar and Vengallattore [11] coupled 1-D Euler–
Bernoulli beam theory and 2-D heat conduction equation and
obtained the TED quality factor in terms of series solutions. Serra
and Bonaldi [12] presented a finite element formulation for TED in
a Reissner–Mindlin plate and 3-D elastic structure. In the plate
model, they used a more restrictive linear approximation for
temperature variation across the thickness which is justifiable
for thin plates but which may not be able to capture the
temperature variation of thick plates. Lepage [13] used finite
element method to find the TED quality factor of Euler–Bernoulli
beam. He used a cubic approximation of temperature variation
across the thickness. Guo et al. [14] used two-dimensional finite
element method to analyze vented MEMS resonators. De and
Aluru [7] used a combined finite cloud method and boundary

cloud method to verify the results from their modified theory
of TED.

Most of the models existing in the literature use Euler–
Bernoulli beam theory which fails at very low length to thickness
ratios. The simple analytical models of Zener, Lifshitz and Roukes
are easy to implement, but the assumption of negligible heat
transfer in the axial direction may be incorrect when the beams
are thick. In thick beams, heat conduction in the thickness
direction may not be negligible as compared to the heat conduc-
tion in the axial direction. In this work, an analytical solution for
TED quality factor in 1-D Timoshenko beam coupled with the 1-D
thermal conduction equation by neglecting the heat conduction in
the axial direction using a procedure similar to that followed by
Lifshitz and Roukes [3] is presented to explore the impact of beam
theories used to model the structural part on the TED quality
factor estimate. In case of numerical solution, the 1-D Timoshenko
beam equations coupled with the 2-D thermal conduction equa-
tions are used to model the TED. Heat conduction in the axial
direction is not neglected in numerical solution. A weighted
residual technique is used in the thickness direction to reduce
the 2-D heat equation to an equivalent 1-D heat conduction
equation. These coupled equations are solved numerically using
the spectral element method implemented through MATLAB s

environment. The spectral element method (SEM) is a higher order
finite element (FEM) which combines the geometrical flexibility of
classical FEM and exponential convergence of global spectral
methods [15]. The main advantages of SEM over FEM are high
computational efficiency compared to h-type FEM at fixed accu-
racy level, exponential convergence, optimally lumped mass
matrix and efficient tensor product factorization [16].

In the following section, the fully coupled thermoelastic equa-
tions for a Timoshenko beam have been formulated to derive an
analytical solution for TED quality factor along the lines of Lifshitz
and Roukes [3] and to develop a numerical solution using the
spectral element method. For obtaining the numerical solution,
two-dimensional thermal equation has been reduced to an
equivalent one-dimensional equation by applying a weighted
residual technique in thickness direction.

2. Thermoelastic vibrations in a linear Timoshenko beam

2.1. Mathematical modelling

Consider a beam of length L (0rxrL), width b (0ryrb) and
thickness h (�h=2rzrh=2) as shown in Fig. 2. The displacement
field in the Timoshenko beam is given as [17]

ux ¼ u0þzϕðx; tÞ; ð5Þ

uy ¼ 0; ð6Þ

uz ¼w0ðx; tÞ ð7Þ
where ux, uy and uz are the displacements in the x, y, z directions
respectively. z is the distance of a point from the neutral axis of the
beam, u0 is the axial displacement of a point on the neutral axis,
w0 is the transverse displacement of a point on the neutral axis
and ϕ is the rotation of the transverse normal about the y� axis.
Using these displacements, the non-zero stress components, σxx
and σxy, are calculated as

σxx ¼ E
∂ux

∂x
�αΔT

� �
¼ E z

∂ϕ
∂x

�αΔT
� �

; ð8Þ

σxy ¼ G
∂ux

∂z
þ∂uz

∂x

� �
¼ G ϕþ∂w0

∂x

� �
; ð9Þ

Fig. 1. Temperature distribution in a beam under deformation.

Fig. 2. Schematic of a Timoshenko beam with clamped–clamped boundary
conditions.
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