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a b s t r a c t

The loading and unloading process of a deformable sphere pressed by a rigid flat is a primary problem in
contact mechanics. This work studies the contact of an elastic–plastic sphere with a rigid flat under stick
condition during loading and unloading process by the finite element method. The sphere material is
assumed isotropic with power-law hardening. The contact load and contact area are calculated at various
Poisson's ratios and strain hardening exponents, with the sphere material properties varying from purely
elastic to elastic-perfectly plastic. Analytical dimensionless expressions of the contact load, contact area
and the residual interference after fully unloading for the power-law hardening materials in the elastic–
plastic case are proposed for a wide range of interferences.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Contact widely exists in many engineering applications [1,2], which
notably affects the product performances. Accurate calculation of the
contact load and contact area is an important task to help understand
the contact behavior and further performances such as friction and
wear. However, engineering surfaces are rough in themicroscopy scale.
When two engineering surfaces are compressed together, the real
contact is discontinuous because the contact only occurs at discrete
asperities owing to the effect of the surface roughness. What is more,
the radii and heights of these asperities are different and distributed
randomly. All these characteristics make it difficult to reveal the
mechanism of contact between engineering surfaces. For a long time,
the contact problem was studied by many researchers for different
material structures and in different half spaces. Some researchers
focused on the contact of layered materials [3], and some researchers
studied the contact in the inhomogeneous half space [4,5]. While in
this work, the contact in the homogeneous half space for the solid
which was non-layered materials was considered. The original work of
Hertz [6] provided a solution for the frictionless, non-adhesive contact
of the elastic solids. But actually, real machined surfaces have rough-
ness on a wide range of length scales. Then Greenwood and William-
son [7] pioneered the development of models for contact between
complex surfaces. The popular model assumes the asperities having
the identical radii and Gaussian distribution heights, and applies Hertz

theory to each asperity contact independently. Many scholars followed
this model and developed the “statistical approach”. The subsequent
studies extended the scope to elastic–plastic contact beyond the Hertz
restriction, and some elastic–plastic contact models were proposed by
Chang et al. [8], Zhao et al. [9], and so on.

In contrast with the statistical approach, the finite element (FE)
method is a more accurate means to study the contact, which can
also provide the detailed distribution of contact stress and strain.
Kogut and Etsion [10] (KE model) gave a precise FE solution for the
frictionless elastic–plastic contact of a deformable sphere and a rigid
flat with the commercial ANSYS package. They proposed generalized
empirical equations to calculate the contact load and contact area,
which was not restricted to a specific material or geometry. They
found these equations were negligibly affected by the ratios of
Young's modulus to yield strength E/Y0 and those of tangent modulus
to Young's modulus ET/E. Jackson and Green [11] (JG model) provided
a similar FE model with much finer meshes. They observed the effect
of the deformed geometry on effective hardness and derived some
useful expressions for the contact load and contact area as the
functions of the interference. This model shows that only at very
large interferences, the ratios E/Y0 will affect the contact behavior.
Shankar and Mayuram [12] (SM model) studied the effect of the
tangent modulus and the yield strength on the translation behavior
of the materials from elastic–plastic to fully plastic case. However,
the above FE models [10–12] only took into account the loading case,
but the unloading process was all neglected, which is as important as
the loading process actually [13–15]. Etsion et al. [16] proposed the
first accurate FE solution for the unloading of an elastic–plastic
loaded spherical contact. They provided some empirical equations
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for the contact load and contact area versus the contact interference
during unloading, and for the residual interference after fully unl-
oading. This model was generalized and independent of the specific
materials or radii of the spheres. Kadin et al. [17] improved this
model to consider the influence of adhesion on the unloading
process. Du et al. [18] researched the loading and unloading process
for the gold and ruthenium micro-switches with a similar model.

Most of the aforementioned studies were based on the assumption
of frictionless (perfect slip) contact condition. However, friction widely
exists in engineering applications such as bolts and brakes. The
frictionless assumption may be invalid in dry contact of dissimilar
materials as shown experimentally by McGuiggan [19] and Ovchar-
enko et al. [20]. Therefore, stick condition as a new contact assumption
has been applied by researchers. Compared to the frictionless contact
condition under which there is no tangential stress in the contact
region, the stick condition stops the contact points on the sphere from
the relative displacement in the radial direction, but permits the axial
displacement of the sphere surface from the rigid flat during unload-
ing [21]. The first analytical solution for the elastic spherical contact
problem under stick condition was given by Goodman [22], and many
subsequent analyses were performed more exactly. Brizmer et al.
[23,24] studied the effect of two contact conditions (perfect slip versus
stick) on the loading of elastic and elastic–plastic spherical contact
respectively, and derived the dimensionless expressions of the contact
load and contact area. They concluded that the interfacial parameters
were not so sensitive to the contact condition, independent of the
ratios E/Y0 and ET/E. But Poisson's ratio had slight influence on the
contact load and average pressure, and the evolution of the plastic
zone with increasing interference was substantially related to the
contact conditions. Ovcharenko et al. [25] performed an experimental
investigation to calculate the real contact area between a flat and a
sphere during loading and unloading under both perfectly slip and
stick condition in the elastic–plastic regime. The experimental results,
which were obtained with the copper and the stainless steel spheres
pressed against a sapphire flat, were compared with the existing
theoretical models and confirmed the validity of the expressions of the
contact load and contact area given by Brizmer et al.[23,24]. Zait et al.
[26] analyzed the unloading process of an elastic–plastic spherical
contact under stick condition for various material properties, and
found the obtained load area curve showed a notable difference com-
pared to that obtained under perfect slip condition. Further, they
presented the empirical expression for the residual interference con-
sidering the effect of Poisson's ratio. The proposed conclusions were in
good agreement with experimental results in their paper.

In all the mentioned FE models which investigated the contact of
a sphere and a rigid flat, the material of the sphere was generally
assumed elastic-isotropic linear hardening with tangent modulus as
2% of the Young's modulus. While in this paper, the contact behavior

of the power-law hardening materials is studied. Remberg and
Osgood [27] first proposed a direct power relation between stress
and plastic strain. Olsson and Larsson [28] researched the force–
displacement relations at contact between elastic–plastic adhesive
bodies obeying the power hardening law both analytically and num-
erically during loading and unloading process. Lan and Venkatesh
[29] studied the relationship between the hardness and the elastic–
plastic properties including the elastic modulus, the yield strength
and the strain hardening exponent. Zhao et al. [30] studied the
frictionless contact of a power-law hardening elastic–plastic sphere
with a rigid flat by the FE method. They presented the dimensionless
expressions of the contact load and contact area versus the contact
interference during loading and unloading process as the strain
hardening exponent varied from 0 to 1. Also, the residual interference
after fully unloading at different strain hardening exponent was
given. However, the research about the contact between a power
hardening elastic–plastic sphere and a rigid flat under stick condition
is still missing.

The present work focuses on the contact of a power hardening
sphere with a rigid flat during loading and unloading process under
stick contact condition by the FE method. The contact load and
contact area are calculated at various Poisson's ratios and strain
hardening exponents, with the sphere material properties varying
from purely elastic to elastic-perfectly plastic. The empirical expres-
sions of the dimensionless contact load, contact area and the
residual interference after fully unloading for the power-law hard-
ening materials in the elastic–plastic case are presented for a wide
range of interferences.

2. Theoretical background

Fig. 1 shows the loading and unloading process of the contact
between a rigid flat and a deformable sphere with a radius R. The
dashed lines represent the original profiles of the sphere and the
rigid flat before the contact occurs. The solid lines in Fig. 1a show
the rigid flat and the sphere with an interference w and a contact
radius a related to a contact load P during loading. The solid lines
in Fig.1b represent the sphere contour after fully loading with the
maximum interference wmax and fully unloading with the residual
interference wres, and the rigid flat after fully unloading.

Under stick condition of the contact between a rigid flat and a
deformable sphere, the critical interference wc at the yielding
inception and the corresponding critical load Pc and critical area Ac

are given by Brizmer et al. [23] as follows:

wc¼ Cν
πð1�ν2Þ

2
Y0

E

� �� �2

� Rð6:28ν�7:83ðν2þ0:0586ÞÞ ð1Þ

Nomenclature

a contact radius
A contact area
Ac critical contact area at yielding inception
Amax maximum contact area before unloading
An dimensionless contact area
An
max dimensionless maximum contact area, Amax/Ac

E Young modulus of the sphere
ET tangent modulus of the sphere
n strain hardening exponent
P contact load
Pc critical load at yielding inception
Pmax maximum contact load

Pn dimensionless contact load
Pnmax dimensionless maximum contact load, Pmax/Pc
R radius of the sphere
w contact interference
wc critical interference at yielding inception
wmax maximum contact interference before unloading
wres residual contact interference after fully unloading
wn dimensionless contact interference
wn

max dimensionless maximum contact interference, wmax/
wc

wn
res dimensionless residual contact interference after fully

unloading
Y0 virgin yield strength of the sphere
ν Poisson's ratio of the sphere
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