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a b s t r a c t

The multi-parameter Sturm–Liouville eigenvalue problems, associated with the size-dependent
longitudinal vibration of a finite micro-scale bar embedded in orthogonal transverse magnetic fields,
are addressed in this study. Derived as a fourth-order partial differential equation, and augmented by
enriched higher-order boundary conditions, the mathematical model of the micro-scale bar is predicated
on the duo of the strain gradient theory of elasticity and the extended Hamilton's principle. The derived
model is tackled with the computation scheme of the power series method. A thorough validation of the
simplified form of the model is presented with benchmark results published in the literature. Presented
along with the validation study is a comprehensive parametric examination of the influence of the
aspect ratio, the material length scale, the mass and stiffness ratios of attachments and the magnetic
field strength. Results from the analyses affirm that in the case of a lightweight mass attached to the end
of the microbar, the axial resonant frequencies approach that of a microbar with a fixed–free boundary
condition. However, in the case of an attachment with a heavy mass the fundamental resonant
frequency of the microbar tends to zero. A Pareto analysis of the order of influence of the model's
variables unmasks the ratio of the stiffness of the microbar and an attached elastic spring as having the
most significant effect on the fundamental axial natural frequency, in the absence of the magnetic field.
In the presence of the magnetic field, however, the effects of the end attachments are totally
overshadowed by the influence of the magnetic field strength.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The elementary mathematical models for the longitudinal and
torsional vibrations of bars are one-dimensional wave equations,
characterized by second order spatial and temporal differential
operators. These models have been adroitly used for decades to
understand a number of physical phenomena [1]. Typical examples
of the application of these elementary models include their use in
studying: (i) the behavior of pressure waves in an ideal fluid along
the axis of a cylindrical vessel; (ii) the lateral vibrations of taut
strings; and (iii) the extensional and torsional behaviors of
ultrasonic horns.

Despite the versatile usages of these mathematical models,
however, a little bit of uncertainty hovers over their application to
certain domains. One such area, where their application appears to
have been called into question is in the simulation of high-frequency
stress waves in bars [2]. Another notable situation where the
elementary model is inadequate is with respect to the testing of

low impedance specimens (such as viscoelastic bars). In this respect,
a detailed discussion on several approximate theories that have been
put forth to deal with the limitations of the model is provided in the
study by Anderson [3].

In the current study, we examine another domain of application
in which the elementary model of bars is also found to under-
estimate the actual response of the system it idealizes, namely in
relation to the size-dependent vibration response of ultra-thin micro-
scale structural element [4]. In this particular instance, the weakness
of the elementary model is attributed to its formulation through the
classical continuum theory (CCT). Given the underlying assumptions
in the CCT, models of solids derived from it only possess length
parameters associated with the geometry of such solids [5]. Conse-
quently, the mathematical models derived from it are rendered
incapable of predicting size-specific phenomenological traits like dis-
persion strengthening and the Hall–Petch effect [6]. The phenom-
enon of size-effect is prominent in micron-scale structures,
microstructured porous materials and ductile cellular solids [7–10].
Accumulated experimental evidence for size-specific behavior in
micron-scale solids of different materials could be traced to a number
of pioneering studies, notable among which are the investigations by
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Kelly [11], Ebeling and Ashby [12], Ashby [13], Hutchinson [14] and
Lam and Chong [15].

For the purpose of accommodating size-effect in the prediction of
response of micro-scale structures, the presence of material length
scale is required in the mathematical models of these structures. The
inclusion of the material length scale, in turn, requires the adoption
of the axiom of nonlocality in the description of the elastic fields
within an infinitesimal bounded volume of the structures [16].
Research studies along this direction have thrown into prominence
a new set of higher-order mathematical models of elastic continua
containing internal material length scales. Vardoulakis and Sulem
[17] chronicled a few of the different formulations of these higher-
order theories. Collectively referred to as enriched micro-continuum
theories [18], they provide mechanistic routes for assessing the
implication of microstructural effects on the behavior of micron-
scale or nano-scale structures. Prominent among these theories are
the strain gradient theory [19,20], the micropolar and nonlocal
elasticity theories [21], the couple stress theory of elasticity [22,23]
and the strain gradient theory with surface energy [24]. While some
of these theories have been in development for years, their recent
rise to prominence is tied to their applicability to the response
prediction of nano-sized and micro-sized structures. Small-scale
effect in nano-rods have been analyzed, using Eringen's nonlocal
elasticity theory, by Aydogdu [25] and Lim et al. [26]. The problem of
using the axial vibration behavior of a carbon nanotube for mass
sensing applications was addressed by Aydogdu and Filiz [27]. Based
on the strain gradient theory with surface energy, the vibration of
cytoskeleton, idealized as a network of microtubules, has been
studied and reported by Farajour et al. [28] and Civalek et al. [29].
The current investigation is related to the dynamics of microbars,
and its foundation is anchored on the strain gradient theory (SGT).
As a higher-order theory, the SGT is endowed with additional
material length scale parameters in addition to the two classical
Lamé constants associated with the theory of linear elastic isotropic
materials [30]. The adoption of the SGT for the present work on the
axial dynamics of microbars is attributed to the theory's ability to
give consistent agreement with empirical observations [31,32].

Microbars are principal components of microelectromechanical
systems (MEMs). Thus, the quantification of their dynamic behavior
is essential to the optimization of numerous micro-architected
MEMs devices such as multi-functional heat exchangers designed
with micro-lattices [33], micro-manipulators [34], and micro-
turbomachinery [35]. The survey of the literature reveals that
studies on the dynamic response of micro-scale bars formulated
through the SGT are rather limited, especially when compared to
studies on the application of the SGT to the prediction of the
response of micro-scale beams and micro-plates. Of the few studies
available, Tsepoura et al. [36] applied the SGT to examine the
influence of size-effect on the static response of tensioned gradient
elastic micro-scale bars. Kahrobaiyan et al. [4] and Akgöz and
Civalek [37] studied the longitudinal vibration of microbars.
Recently, Güven [38] examined the propagation of longitudinal
stress waves in micro-scale bar with the SGT. It is interesting to note
that in all of the aforementioned studies, the solution of the higher-
order model of the microbar that has been reported is limited to the
classical boundary conditions of fixed–fixed ends and fixed–free
ends of the microbar.

The modest contribution of this study is in addressing the problem
of the effect of end attachments and orthogonal transverse magnetic
fields on the longitudinal dynamics of microbars whose higher-order
model is derived from the SGT. From the literature survey, to the
best of the authors' knowledge, existing studies have not considered
these effects, which are crucial for the operation of next generation
microsystems [39], on the dynamic or static behavior of microbars. To
account for the intrinsic size-dependent trait of the microbar,
the study employed two different microstructure-dependent strain

energy formalisms to arrive at the eventual models of the microbar.
The first strain energy formalism is based on the SGT espoused by
Lam et al. [30], while the second originated from the classical work of
Mindlin [19]. For the retrieval of the eigenvalues from the derived
models, the power series method (PSM) is employed. Through the
flexibility and robustness of the PSM, the current study examined,
systematically, the shift in the axial resonant frequencies of the
microbars when: (i) restrained by a flexible end with a discrete
stiffness; (ii) attached to an external discrete mass; and (iii) connected
to a flexible end with a discrete stiffness and a discrete mass.
Although a major application of the PSM is in dealing with
variable-coefficient differential equations, its adoption for the
constant-coefficient governing equations derived in the current study
is hinged on two reasons. First, the governing equation needs to be
supplemented by higher-order boundary terms arising from the effect
of the end attachments and the strain gradient effect (as illustrated in
Table 1). Due to the nature of these boundary terms, the PSM offers a
faster rate of convergence on the eigenvalues of interest as a result of
its simplicity in implementation [40]. Second, through the use of the
PSM, the retrieval of the eigenvalues is done without having to deal
with the transcendental equation that often arises from the exact
solution approach. Albeit the PSM in its original form is not easily
extended to 2D problems, it forms the basis of methods like the
differential transformation method as well as the meshless imple-
mentation of the Taylor series method (MITSM) that have been
applied to 2D problems [41,42]. Moreover, by supplementing the
PSM with the framework of design of experiment, espoused by
Montgomery [43], we are able to report on the pattern of the
frequency shift precipitated by the size-effect, the end attachments
and the presence of the orthogonal transverse magnetic fields. The
rest of the presentation is organized as follows. In Section 2, a short
introduction to the theoretical foundation of the strain gradient
theory is provided. Section 3 demonstrates the application of the
PSM to the size-dependent elastodynamics governing equation of
microbars with and without attachments. Section 4 is dedicated to
the discussion of numerical results, while concluding remarks are
detailed in Section 5.

2. Problem foundation

2.1. Kinematic assumptions

It is desired to consider the longitudinal (axial) vibration of a
long, narrow micro-scale bar, the schematic of which is shown in
Fig. 1. Illustrated in Fig. 2 is the set of boundary conditions of the
micro-scale bar to be studied. For this micro-scale bar, the rightward
displacement along the length Lð Þ represents a positive motion. The
micro-scale bar is constrained to move in a fixed plane to which its
initial longitudinal axis (x-axis) belongs. Furthermore, the area of its
cross-section is denoted as A, and the undeformed state of the
microbar is stress free. In what follows, the particles of the microbar
are considered to have a strictly positive density ρ

� �
. For the purpose

of modeling, the microbar is assumed to be composed of microele-
ments undergoing micro-deformations. Consequently, the micro-
deformation is characterized by considering an infinitesimal volume
of the microbar, which is then treated as a differentiable manifold
embedded in a Euclidean 3-space 8 . The following displacement
trial field is taken to hold for the micro-deformation

u¼ uxexþuyeyþuzez ð1Þ

where ux; uy; and uz represent the components of the trial field in
the x; y and z directions of the adopted right-handed Cartesian
coordinate system. Since the longitudinal vibration takes place in
the axial direction of the microbar, the deformation of its sectional
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