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a b s t r a c t

Free in-plane vibration analysis of isotropic plates with skew geometry is carried out using the spectral
collocation method. The mathematical formulation of the discretized spectral solution is expressed in a
concise matrix form which can be directly and easily coded in modern mathematical software packages. A
rather comprehensive set of plate cases with various skew angles, aspect ratios, and boundary conditions is
presented, with the aim of both showing the rate of convergence and degree of accuracy of the adopted
method and providing useful design guidelines related to the effect of the plate geometrical parameters on
the fundamental in-plane frequency value.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Accurate computation of the in-plane modal characteristics of
plates can be of utmost importance in some engineering applica-
tions such as transmission of high frequency vibration through a
built-up structure [1,2] or excitation of thin plates subjected to
high speed tangential flows.

Owing to the practical interest of the problem, some researchers
investigated the in-plane vibration of plates according to different
mathematical approaches. About two decades ago, Bardell et al. [3]
used the Ritz method to study the in-plane frequencies and mode
shapes of isotropic rectangular plates with various boundary condi-
tions. The same method was adopted later by others to study the
effect of ply orientation in orthotropic and laminated plates [4,5], the
influence of nonuniform elastically restrained boundaries [6] and the
modal properties when the plate has non-rectangular geometry [7].
Gorman [8–10] applied the superposition method to accurately
predict the in-plane frequencies of rectangular plates with fully free
and clamped edges and uniform elastic supports normal to the
boundary. The Kantorovich–Krylov method was employed by Wang
andWereley [11] to compute free in-plane vibration characteristics of
rectangular isotropic plates with various combinations of clamped
and free edges. Finally, a series of solution is obtained in Refs. [12–14]
for the in-plane vibration analysis of isotropic and orthotropic plates
with elastically restrained boundaries.

Besides the aforementioned approximate analytical-type and num-
erical studies, some exact solutions of the free in-plane vibrations of
rectangular plates are also available in the open literature. Gorman
[15] analyzed plates having at least two opposite edges simply supp-
orted and the other edges free or clamped. In Gorman's work, two
distinct types of simple support boundary conditions are formulated:
so called simple support type 1 (SS1), where the normal stress and
tangential displacement along the edge are zeros, and simple support
type 2 (SS2), where normal displacement and tangential stress are
zeros. Xing and Liu's work [16] is another significant contribution in
this field. They employed the separation of variables’method to obtain
exact solutions of natural frequencies and mode shapes when at least
two opposite edges had either types of simple support conditions
previously introduced. All possible exact solutions were successfully
obtained, including cases which were not available before. An exten-
sion of the same exact procedure to orthotropic plates is presented
in Ref. [17].

Despite the availability of the works cited above, the amount of
research devoted to free in-plane vibration of plates is still extremely
small in comparison to that devoted to free transverse vibration of
plates. In particular, very little attention has been given to in-plane
vibration analysis of non-rectangular plates with straight edges. To the
best of author's knowledge, the topic is discussed only in the work by
Singh et al. [7], where a modified form of the Rayleigh–Ritz method is
adopted to study rhombic plates. Only few cases with clamped and
free edges are numerically investigated in Ref. [7]. Skew plates are of
practical interest in the aerospace industry due to the increasing use of
such components in aircraft and space vehicles. Indeed, there are
extensive studies on the transverse vibration of plates with skew
geometry (see, for instance, [18,19] and references therein). The same
cannot be said for the in-plane vibration problem. The main purpose
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of the present paper is to contribute to the literature on vibration of
skew plates by providing complete sets of vibration data related to in-
plane modal properties of plates with various boundary conditions,
different aspect ratios and small and large skew angles.

Since exact solutions cannot be obtained for the problem under
study, a numerical approach must be employed. Instead of using a
classical finite element method (FEM), the solution of the free in-plane
vibration of skew plates is obtained here by a spectral collocation
method. FEM typically requires both huge computational resource to
accurately capture high frequency modal behavior and remeshing for
any variation of geometrical parameters. Therefore, it appears to be an
unsuitable choice especially when extensive optimization and para-
metric analysis are to be performed.

Spectral methods [20] are known to have high rate of convergence
and accuracy. There are various kinds of spectral methods, which can
be classified according to the selection of basis and weighting func-
tions in the numerical procedure. The spectral collocation method
used here, also known as the Chebyshev collocation method or the
pseudospectral method [21], can be considered as a global spectral
method that performs a collocation process, i.e., weighting functions
are delta functions centered at special grid points called collocation
points. Since the mathematical formulation is simple and powerful
enough to produce approximate solutions close to exact values, this
method has been largely adopted with success in solving partial
differential equations governing many physical phenomena such as
fluid dynamics and wave motion. It was also used for the solution of
structural mechanics problems. Lin and Jen [22] used the pseudos-
pectral method for computing the bending response of laminated
anisotropic plates. The eigenvalues analysis of Timoshenko beams and
axisymmetric Mindlin plates is presented by Lee and Schultz [23].
More recently, Sari and Butcher applied the pseudospectral method to
study the effect of damaged boundaries on the free transverse vibra-
tion of thin, moderately thick and thick rectangular plates [24–26]. It is
worth mentioning that, as pointed out by Shu [27], the pseudospectral
method is identical to the differential quadrature method (DQM) [28]
when the grid points of DQM are chosen to be the Chebyshev collo-
cation points. It is also noted that, differently from the out-of-plane
free vibration problem of thin plates, the application of DQM to in-
plane vibration analysis of plates is easier since difficulty in dealing
with multiple boundary conditions [29,30] does not exist.

The paper is organized as follows. Section 2 presents the mathe-
matical formulation in terms of equations of motion and boundary
conditions of the problem under study, and the related discretization

procedure and eigenvalue problem. The discretization of the boundary
-value problem is obtained in a concise matrix form which can be
directly and easily coded in modern mathematical software packages.
Some numerical results are shown in Section 3. First, the rate of con-
vergence of the method is discussed with respect to FEM solutions and
for varying skew angles and boundary conditions. Then, the accuracy
of the present approach is evaluated by comparison with some refer-
ence cases available in the literature. Finally, the fundamental in-plane
frequencies of plates with various aspect ratios, skew angles and
boundary conditions are reported. Section 4 contains some concluding
remarks.

2. Mathematical formulation

2.1. In-plane equations of motion and boundary conditions

Under the small strains assumption, the in-plane dynamic equili-
brium of a homogeneous isotropic plate of thickness h with unde-
formed midplane Ω (see Fig. 1) can be expressed in weak form
through the principle of virtual displacements as follows:Z
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where u¼ uðx; y; tÞ and v¼ vðx; y; tÞ are the displacement compo-
nents along the in-plane (x,y) cartesian coordinate directions, δ
denotes the virtual variation, m¼ ρh is the mass per unit area and
Nαβ (α, β ¼ x, y) are the in-plane stress resultants.

After integrating by parts (Eq. (1)), the equilibrium can be
written asZ
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where Γ is the plate boundary and nx and ny are the components of
the outward normal n at a point on Γ. Making use of the constitutive
equations and exploiting the arbitrariness of the virtual variations
over Ω, the in-plane equations of motion can be written in matrix
form as
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where the elements of the 2�2 matrix of linear differential
operators are given by

L11 ¼ A11
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The quantities Aij are the in-plane rigidities of the plate defined as
A11 ¼ Eh=ð1�ν2Þ, A12 ¼ νA11, A22 ¼ A11, and A66 ¼ Eh=½2ð1þνÞ�,
where E is Young's modulus and ν is Poisson's ratio.

The boundary integral in Eq. (2) can be alternatively written asZ
Γ
δunNnnþδusNns
� �

ds ð5Þ

where un and us are the boundary displacements along the normal
and tangential directions, respectively, on the boundary Γ (see Fig. 1),
and Nnn and Nns are the corresponding boundary stress resultants.Fig. 1. A plate of generic shape Ω and boundary Γ.
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