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a b s t r a c t

The torsional static and dynamic nonlocal effects for circular nanostructures subjected to concentrated
and distributed torques are investigated based on the nonlocal elasticity stress theory. The total strain
energy and kinetic energy components are derived and the variational energy principle is applied to
derive the governing equation of motion and the corresponding boundary conditions. A new nonlocal
finite element method (NL-FEM) is developed to solve the integral nonlocal equation. New numerical
solutions for statics and dynamics of nonlocal nanoshafts, nanorods and nanotubes with various loads
and boundary conditions are presented. The NL-FE numerical solutions are compared with analytical
solutions obtained by solving the differential nonlocal equation. It is observed that the deformation
angle as well as the ratio of nonlocal to classical deformation angle increases with increasing nonlocal
nanoscale while the natural frequency for free torsional vibration decreases with increasing nanoscale.
This paper concludes that the analytical nonlocal model and solutions, which apply the differential
nonlocal constitutive relation, fails to capture the nonlocal boundary effects. The NL-FEM, which solves
directly the original integral nonlocal stress relation, demonstrates nonlocal boundary effects for all
cases of study. The differences of the differential and integral nonlocal stress relations are reported using
representative numerical examples.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The present state of development for new technologies using
advanced materials and structures is moving towards a minute
length scale (i.e. micro- or nano-scale) and this is becoming the
root or progress in nanotechnology. When the size of a body or a
structure enters the micro- and nano-ranges, the material exhibits
specific and interesting nonclassical mechanical, chemical, elec-
trical properties, etc. The classical continuum theories and models
are unable to depict the influence due to this minute-length scale
[1,2]. Therefore, new continuum mechanics models or molecular/
atomic dynamic simulation approaches are thus required. Non-
local elasticity theory is one of the continuum models which was
first developed by Eringen [3–5] and his associates [6]. It is based
on the assumption that the stress field at a point in an elastic
continuum not only depends on the strain at that point but also
depends on strains at all other points in the body.

Since the discovery of carbon nanotubes (CNTs) by Iijima [7] in
1991, nanostructures are being increasingly used because of their
exceptional mechanical properties such as large Young's modulus [8],
flexibility [9], high strain and stability [10,11] and conductivity proper-
ties [12]. In recent years, a number of studies on nonlocal fields based
on the nonlocal constitutive relation of Eringen [3–5] have been
reported. Most of the studies focused on various issues of practical
interest for carbon nanotubes [13–21], nanobeams [16,19,22–29],
nanorods [30–33], nanoplate/graphane sheets [14,34], etc. The main
research interests include either static behavior such as bending
[19,22,25,27,28,29,35], buckling [15,18,21,22,25,27,28,33,35,36] or the
dynamic behavior such as vibration [13,22,25,27,28,30,37,38,39], and
wave propagation [16,20], etc.

In particular, Sudak [36] presented column buckling of multi-
walled carbon nanotubes (MWCNTs) based on the nonlocal conti-
nuum mechanics model; Wang et al. [21] also used this model to
investigate torsional buckling of moderately large carbon nanotubes
(CNTs) with different aspect ratios. This nonlocal continuum
mechanics model was further implemented by several researchers
to study torsional vibration of nanostructures i.e. CNTs [38], nanorods
[31] and dynamics [40,41]. Narender et al. [32] also used a strain
gradient model to study torsional vibration of micro- and nano-rods.
Shell models were also applied to study torsional buckling of CNTs
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[21], double-walled carbon nanotubes (DWCNTs) [18] and MWCNTs
[42,43]. Besides, the tight-binding approach [44] and molecular
dynamics simulation [45] were developed to investigate torsional
buckling of SWCNTs. Other interesting phenomena of nano-structured
materials that have been reported include the effects of interface
[46–48], couple stress theory [46], strain gradient in torsion [47], and
effective elastic moduli [48].

In the research works mentioned above, the classical quantities
are directly replaced by the corresponding nonlocal quantities in
the equilibrium equation to derive the nonlocal governing differ-
ential equation of motion. This model has been extensively used to
study the mechanical properties of nanomaterials or nanostruc-
tures as described above. The differential nonlocal constitutive
relation was transformed from the original integral nonlocal
constitutive relation [3–6]. This integral-to-differential transfor-
mation imposes some restrictions which limit the applicability of
the differential constitutive relation. One limitation is that the
nonlocal boundary effects represented by the integration of a
kernel function in the integral formulation are not perfectly
matched or transformed in the differential form at a boundary.
For this purpose, a new nonlocal finite element method (NL-FEM)
with integral form of nonlocal elasticity [49–52] is developed in
this paper and it is solved numerically for different cases in the
context of statics and dynamics for torsional behavior of circular
nanostructures.

Although there exist various scopes of research for transverse
bending, vibration, and wave propagation of nonlocal nanostructures,
very limited studies on torsional behaviors are available at present.
Because torsional deformation and vibration in NEMS and some other
nano-devices are frequently present, their effects and behavior should
not be discounted. In this paper, angular deformation and free
vibration of circular nanostructures in the presence of combined
distributed torque and fixed external end torque based on nonlocal
elasticity theory [49–52] are investigated. In addition, the differential
form of nonlocal elasticity theory [3–6] is also used to obtain the
analytical solution for static problem. To compare the accuracy of the
present NL-FEM, the results obtained are compared with those
predicted by the analytical solutions and other models numerically
and qualitatively including the couple stress theory [46], the strain
gradient model [47] and the Mori-Tanaka effective field model [48].
The new NL-FEM solutions are consistent and the conclusions are
insightful with respect to the solutions of transverse bending and
vibration of nanobeams and CNTs.

2. Nonlocal modeling and formulation

2.1. Kinematics

The static torsion of a fixed-free nanorod/nanotube with length
L and subjected to a combined distributed torque T xð Þ and fixed
end torque T0 is shown in Fig. 1.

For a circular nanostructure, the relation between the classical
shear stress σ0

rθ and the shear strain γ at a point r0 from the center
can be expressed as

σ0
rθ ¼ Gγ ¼ Gr0

dθ
dx

ð1Þ

where G is the shear modulus and γ ¼ r0ðdθ=dxÞ is the shear strain.
The variation of torsional strain energy of the system is given by

δU ¼
Z
V
σrθ δγ dV ¼

Z L

0

Z
A

σrθr0δ
dθ
dx

� �� �
dA dx

¼ Trθδθ
� �L

0�
Z L

0

∂Trθ

∂x
δθ

� �
dx ð2Þ

with

Trθ ¼
Z
A
r0σrθdA ð3Þ

where Trθ is called the stress resultant or torque. In the presence of
twisting moment T xð Þ and an end torque T0, the variation of work
done by this combined load is given by

δW ¼ T0 δθ
� �L

0þ
Z L

0
T xð Þδθ dx ð4Þ

Similarly, the variation of kinetic energy for torsional vibration is

δEk ¼ �
Z L

0
ρIp

∂2θ
∂t2

� �
δθ dx ð5Þ

where ρIp is the mass polar moment of inertia.

2.2. Constitutive relations

2.2.1. Differential form
Unlike the classical theory, the nonlocal elasticity theory [3–6]

assumes that the nonlocal stress tensor at a point x can be
expressed as a result of the weighted average of the contribution
of the stress field within the body in the following expression

σ xð Þ ¼
Z
V
α x0 �x
�� ��; τ� �

σ0 x0ð ÞdV x0ð Þ ð6Þ

where σ xð Þ and σ0 x0ð Þ are the nonlocal and local stress, respec-
tively. The weighting function is specified by a nonlocal modulus
α x0 �xj j; τð Þ which depends on a dimensionless length nanoscale

τ¼
ffiffiffi
μ

p
L

¼ e0a
L

ð7Þ

where μ¼ e0að Þ2 is the nonlocal parameter, e0 is a material constant
and a is an internal characteristic length such as lattice parameter,
granular distance while L is an external characteristic length. In this
paper, characteristic length L is taken as the length of the nanos-
tructure. Although there has been no rigorous research on the
estimate of this nonlocal parameter, it is suggested that this parameter
can be determined by conducting a comparison of dispersion relation
between the nonlocal continuum mechanics and molecular dynamic
simulation or experimentally in an empirical sense through vibration
frequency or buckling load measurement.

For a one-dimensional elastic thin structure, a differential form of
the nonlocal constitutive relation of Eq. (6) can be expressed as [4]

σrθ� e0að Þ2d
2σrθ

dx2
¼ σ0

rθ ð8Þ

where σrθ and σ0
rθ are the nonlocal and classical shear stresses of

structure respectively; and x is the axial coordinate.

2.2.2. Integral form
According to Eringen and his associates [49,50], the nonlocal

theory differs from the classical relation only for the construction
of stress-strain constitutive relation. Based on this assumption,
they developed a simplified elasticity theory for linear homoge-
neous isotropic continuum and the stress-strain relation for such a
continuum is indeed assumed in the form

σ xð Þ ¼D :_ε xð Þ 8 xA V ð9Þ
where V is the domain; x is a vector in this domain; D is the elastic
moduli fourth-order tensor of isotropic local elasticity; σ xð Þ is the
second order tensor representing the stress field at x; and_ε xð Þ is
the second-order strain tensor representing the nonlocal strain
field at x which is the sum of strain arising at x itself and the strain
at x induced by strain arising at all x0ax in V. In general, the
second contribution can be expressed in terms of integral which
governs the nonlocal behavior of the material in the constitutive
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