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a b s t r a c t

The axial and torsional response of helical bodies as well as their inner coupling has been in depth
analyzed, both from an analytical and a numerical modeling perspective. Herein, the radial deformation
is appended as an additional kinematic degree of freedom. To this end, an existing analytical theory is
employed and advanced so as to account for radial strain. The extended stiffness matrix entries are
further verified with the use of a finite element model over a wide range of helix angular configurations.
Overall, closed-form expressions of the 3�3 structural response of the helical body are provided,
relating axial, torsional and radial strain to their force and moment resultants.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Technology evolution and applications have been in a constant
optimization process between engineering limits and human
societies' needs. In the long history of load carrying structure's
development, helices have appeared in various forms as springs,
ropes, lifting cables or overhead power line cables. More recently,
helical structures have found numerous applications in medicine,
indicative examples being stents or scaffolds for tissue repair.

Even though the materials and structural configurations may
vary depending on the chronological period and application
purpose, their mechanical response can be generically character-
ized, providing thus the necessary basis for the analysis and design
of any potential application. In the subsections to follow, a
bibliographic review is provided, complemented by the content
and purpose of the current work.

1.1. Helical structure models

Up to now, a large number of modeling schemes on the
structural response of helical structures have been proposed,
initially with analytical theories which appear in the literature at
the first half of the twentieth century [1]. Analytical derivations
have been complemented by several finite element models,

enriching the helix structural behavior comprehension, as well
as extending available hand-tools of the engineering community.

Analytical modeling schemes addressed the coupled axial and
torsional response of helical structures as a gradual incorporation
of different mechanical contributions. In particular, in early mod-
eling developments, the axial stiffness of the helix cross section
has been the one and only mechanism taken into account for the
description of the helix response [2,3]. Later on, Machida and
Durelli [4] incorporated the effect of the torsional stiffness of the
helix cross section, their modeling approach was further elabo-
rated by McConnell et al. [5]. Emphasis on the influence of the
bending stiffness of the helix cross section was put by Costello [6]
making use of linearized thin beam theory. Utting and Jones [7,8]
accordingly presented a beam theory based model which they
complemented by extensive experimental work on engineering
strands. Raoof and Kraincanic [9] addressed the validity of existing
approaches through parametric studies and experimental data
comparisons. More specifically, limitations and advantages of thin
rod models and orthotropic sheet models were highlighted in
relation to the configuration and size of the helical strand to be
analyzed. Finally, a thin beam theory model – the first to furnish a
symmetric axial–torsional strain stiffness matrix – was presented
by Sathikh et al. [10], its derivations grounded on four generalized
strain parameters after the developments of Ramsey [11].

In the realm of computational modeling, several beam and
volume element based approaches have appeared in the literature.
To mention but a few, Jiang et al. [12–14] modeled helical
geometry effects making use of a helical slice discretized with
volume elements. Nawrocki and Labrosse [15] employed
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displacement based beam elements upon a Cartesian iso-
parametric formulation, through which, the effect of different
kinematic considerations on the structural response of simple
engineering strands was studied. A homogenization approach for
periodic beam-like structures was followed by Cartraud and
Messager [16] with their modeling scheme likewise applied to
simple engineering strands. The latter have been further analyzed
with the use of three dimensional finite elements by Ghoreishi
et al. [17], where limitations of analytical theories have been
pointed out. In more recent works, Usabiaga and Pagalday [18]
simulated helical and double helical configurations response when
subject to tensile and torsional loads, with the use of beam
elements. Finally, Imrak and Erdönmez [19] presented a three
dimensional finite element analysis technique for the modeling of
wire ropes with independent wire rope core (IWRC) both for
simple and double helical geometries.

1.2. Structure of the present work

While the coupled axial and torsional response of helical bodies
has been extensively analyzed, their radial deformation mode has
been commonly disregarded. The present work provides an insight
into the radial response of thin helical structures over the entire
span of helical angles, providing closed-form solutions for the
respective stiffness terms. To that extent, an existing, thin beam
theory based analytical theory is advanced, so as to account for
radial strain in Section 2. Thereafter, a finite element model is
employed to further validate the extended stiffness matrix entries
which are subsequently graphically depicted in Section 3. Finally, a
discussion on the radial stiffness physical significance and rele-
vance to practical applications is made (Section 4), followed by
concluding and recapitulative remarks (Section 5).

2. Structural model

2.1. Helix geometry

The helix is described as a thin helical fiber, with its position
vector being defined in a Cartesian basis as follows:

R¼
a cosφ
a sinφ
bφ

8><
>:

9>=
>;; φ¼ ℓ

γ
; γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þb2

q
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where a stands for the centerline position of the helix, while b and
γ represent the rise along its central Cartesian axis and its Curvi-
linear length respectively, per unit angular evolution φ. Fig. 1
depicts the basic geometric parameters of a helical body along
with a schematic representation of the deformation modes that
are taken into consideration.

It should be noted that ℓ represents the length of the helix, its
projection on the Cartesian axis Z is named as h, while θ describes
the helix angle:

h¼ ℓ sinθ; aφ¼ ℓ cosθ; θ¼ arctan
b
a

� �
ð2Þ

The force and moment resultants developed on the helix cross
section upon loading are denoted as Ft, Mt and Fb, Mb respectively,
following the tangential and binormal local helix axis.

2.2. Structural response

The deformation patterns considered for the helical body are
namely axial, radial and torsional strain. The stiffness matrix
connecting the axial, radial force and torsional moment resultants

with the preceding strains is below defined as:
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where the strain variables appearing at the right side of the
equation are defined as follows:

ϵr ¼
δα
a
; ϵz ¼

δh
h
; ω0 ¼ δφ

h
ð4Þ

It should be pointed out that the typical description commonly
employed in (3) is dependent on the helix geometry. Therefore, a
normalized form of its entries is employed.

κn

ϵzϵz ¼
κϵzϵz
EA

κn

ϵzϵr ¼
κϵzϵr
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ω0ω0 ¼ κω0ω0
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ð5Þ

where EA stands for the axial stiffness of the helical body cross
section, with E being the Young's modulus and A the contained
area (A¼ πr2).

2.3. Radial force notion structural interpretation

The stiffness values relating axial strain ϵz and twist ω0 with
force Fz and moment Mz are independent of the number of helix
windings. In contrast, an absolute radial force resisting a radial
strain ϵr must increase proportional to the number of windings
considered. To that extent, a normalized form of the radial force is
introduced. Starting from equilibrium considerations on a thin
helix, we note that a radial strain is balanced by a circumferential
force component Fc. Considering the analogy of a thin-walled
cylinder as the right plot of Fig. 2 illustrates, it is the circumfer-
ential line load Fc which balances the radial pressure, given as:

2aπbp¼ 2Fc-σ r ¼ p¼ Fc
πab

ð6Þ

where 2a is the diameter and πb the height of the one-half helix
winding used for formulating the equilibrium while σ r the mean
resisting stress to the applied strain. Averaged stresses for the axial
force Fz and moment Mz can be accordingly defined by division

Fig. 1. Helix geometry.
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