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a b s t r a c t

In this paper, we first recall some available Eshelby-based homogenization schemes applied to
microcracked materials. An emphasis is put on models accounting for interacting opened or closed
microcracks and their spatial distribution. On the basis of these schemes, we briefly present a class of
isotropic damage models. The main part of the study is devoted to the derivation of exact solutions for
mechanical fields (damage distribution, displacement, stress fields) in a hollow sphere subjected to a
radial loading and made up of an elastic damageable material. The solutions, discussed in link with the
different homogenization schemes, may serve as a reference for assessment of numerical predictions of
brittle damage models. Interestingly, it is shown that the existence of physically meaningful solutions
strongly depends on the model under consideration. Finally, we establish explicit solution to the hollow
sphere problem in unloading regime.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Nonlinear behavior of quasi-brittle materials such as concrete or
rocks is mainly attributed to nucleation and growth of microcracks
under mechanical loading (see for example [1]). Modeling of the
resulting deterioration phenomena can be suitably performed in
the framework of Continuum Damage Mechanics (CDM). This can
be done by means of a purely macroscopic approach to which an
important literature has been devoted (e.g. [2–10], etc.).1

A complementary alternative consists in micromechanical studies
which aim at deriving the effective behavior and damage of brittle
materials based on statistical informations on the microcracks system
(e.g. [14–19]). Most of these models issued from the above studies are
based on elementary solutions in Linear Elastic Fracture Mechanics
(LEFM) and have significantly contributed to the physical under-
standing of damage mechanisms: in particular, the damage variable
to be used at the macroscopic scale is clearly identified (microcracks
density parameter). A series of two review papers by Kachanov
[20,21] can be notably recommended concerning the LEFM-based
micromechanics of microcracked media. Mention has to be made of

contributions in this field when the solid matrix displays structural
anisotropy (see for instance [22–25], etc.). Other recent develop-
ments, in Eshelby-based micromechanics, include studies accounting
notably for spatial distribution of microcracks [26–28], or for
poromechanical coupling [29,30].

From a structural point of view, the difficulty to deal with
damage-induced softening regimes in numerical computation is
still well recognized as an crucial question which may still deserve
significant research effort. This difficulty remains to be a scientific
challenge in so far as it appears as a possible limitation for the
transfer of damage models in engineering practice. In this respect, it
seems highly desirable to rely upon closed form solutions of simple
structural problems, to be used as academical benchmark for
numerical solutions. This is the main purpose of the present paper
which is organized as follows.

First, various homogenization schemes are described in order to
derive the effective stiffness of microcracked materials. A standard
thermodynamic reasoning allows us to adapt the concept of energy
release rate to the damage evolution problem. In practice, implemen-
tation of the damage models involves the derivative of the effective
stiffness with respect to the damage variable which is provided by the
micromechanical analysis. In view of application to the considered
structural problem, only isotropic properties are addressed.

The main part of the study deals with the response of a hollow
sphere made up of an elastic damage material, and subjected to
traction on the external boundary. The model based on the dilute
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scheme is first implemented and discussed. Thereafter, a more
general damage law including the results of both Mori–Tanaka
[31] and Ponte-Castaneda and Willis schemes is adopted. The
necessary conditions for obtaining a physically meaningful resp-
onse are identified. When they are satisfied, it is shown that there
exists a maximum admissible loading. Beyond this threshold, the
softening part of the response is fully described at both the
microscopic and macroscopic levels. Unloading phases are also
examined.

2. Brief recall of some available estimates for the effective
stiffness of microcraked media

We hereafter propose a short review of the basic ideas of the
homogenization theory in view of its application to microcracked
materials. The interested reader is referred for instance to [32],
[29], [30], [33] or [18].

2.1. Basic concepts of homogenization of linear elastic composites

Let us consider a representative element volume Ω, rev,
subjected, as classically to the uniform strain boundary conditions
which consist in prescribing the displacement ξ on the boundary2

∂Ω:

ð8zA∂ΩÞ ξðzÞ ¼ E � z ð1Þ

Eq. (1) mathematically translates the fact that Ω undergoes the
strain state represented at the macroscopic scale by the tensor E.
For any displacement field ξ kinematically admissible with E in the
sense of (1), it is readily seen that the associated strain field ε
meets the “strain average rule”:

ε ¼ 1
jΩj

Z
Ω
εðzÞ dVz ¼ E ð2Þ

Let us now illustrate the homogenization procedure in the case of
linear elasticity. More precisely, it is assumed that the constitutive
equation at point z of the microscopic scale takes the linear form
σ ¼CðzÞ : ε, where CðzÞ represents the local stiffness tensor. Note
that this framework includes the case of a microcracked linear
elastic solid. Indeed, a set of opened3 microcracks Ci may be
represented as the limit case of an linear elastic material with
vanishing stiffness. This means that CðzÞ is either equal to the
stiffness tensor Cs of the solid domain4 Ωs or to 0 in the cracks:

CðzÞ ¼
Cs ðzAΩsÞ
0 ðzACiÞ

(
ð3Þ

At first sight, the assumption of linear elastic behavior suggests
that the response of the rev to the uniform strain loading defined
by (1) linearly depends on E. This leads to the introduction of the
so-called strain concentration tensorAðzÞ relating the macroscopic
and microscopic strain tensors:

εðzÞ ¼AðzÞ : E ð4Þ
Introducing the fourth order unit tensor I, the strain average rule
classically implies that A ¼ I. The macroscopic state equation then
takes the form of a linear relation between the macroscopic stress
and strain tensors:

Σ¼Chom : E with Chom ¼C : A ð5Þ
Chom is referred to as homogenized stiffness tensor.

The above classical result indicates that an estimate of the
effective stiffness tensor Chom is necessarily based on an estimate
of the strain (rate) concentration tensor in the cracks. We begin
with the so-called dilute homogenization scheme which neglects
the mechanical interaction between cracks. We then describe how
to capture the latter.

2.2. The dilute scheme

If the mechanical interaction between cracks in the rev can be
neglected, each crack reacts to the macroscopic loading as if it
were embedded in an homogeneous medium having the same
stiffness as the solid itself.

2.2.1. Opened microcracks
A simple analytical expression can be derived when micro-

cracks are opened and their orientational distribution is isotropic.
Under the dilute concentration assumption, the overall stiffness
Chom

dil of the microcracked medium then reads in the form:

Chom
dil ¼Cs : I�4πd

3
Q

� �
ð6Þ

where Cs is the stiffness tensor of the solid matrix embedding the
microcracks, while d represents the microcracks density para-
meter which will be explicitly defined hereafter (see (19)).

The fourth order tensors J and K being defined by Jijkl ¼ δijδkl=3
and K¼ I�J, one has

Q¼ 4π
3
〈T〉¼ Q1JþQ2K ð7Þ

with

Q1 ¼
16
9

1�νs2

1�2νs
; Q2 ¼

32
45

ð1�νsÞð5�νsÞ
2�νs

ð8Þ

It follows that microcrack-induced damage affects the bulk and
shear moduli in a different manner:

khomdil ¼ ksð1�Q1dÞ; μhom
dil ¼ μsð1�Q2dÞ ð9Þ

This contrasts with the classical isotropic phenomenological
damage model in which is assumed

khomdil ¼ ksð1�dÞ; μhom
dil ¼ μsð1�dÞ ð10Þ

2.2.2. Closed microcracks
We now consider the case of a closed microcrack. It is assumed

that the two faces of the crack are in frictionless contact. This
means that the microcrack transmits the normal compressive
forces whereas the shear stress in the crack plane remains equal
to 0. As opposed to the case of opened microcracks, it is found that
the bulk modulus is not affected by the damage. Furthermore, the
effect on the shear modulus is different from the one produced by
randomly oriented opened cracks:

khomdil ¼ ks; μhom
dil ¼ μs 1�Q 0

2d
� � ð11Þ

with

Q 0
2 ¼

32
15

1�νs

2�νs
ð12Þ

2.3. Mori–Tanaka estimate [31]

Since the dilute scheme neglects the mechanical interaction
between cracks, it is, by nature, restricted to small values of the
crack density. The so-called Mori–Tanaka scheme is an attempt to
overcome this shortcoming.

2 The macroscopic position vector x is now omitted in order to simplify the
notation.

3 The case of closed cracks is addressed later.
4 For simplicity, the solid phase is assumed to be homogeneous.
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