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a b s t r a c t

We present a procedure for numerical computation of elastic–plastic bending and springback of beams
with asymmetric cross-sections. Elastic-nonlinear hardening behavior of the material is assumed and
both isotropic and kinematic hardening models are considered. The strains are described as a function of
rotation and shift of the neutral axis and the curvature of the beam. Exact geometric expressions for
large deflections and large rotations are taken into account during bending process. A complete loading
history is taken into account including the effect of the local loading during the monotonic decrease of
the load. Numerical examples confirm a strong influence of the load on the final and springback rotation
of the neutral axis, its shift, and curvature of the beam for different cross-sections and materials.
A custom made forming tool was designed and manufactured in-house to experimentally evaluate the
proposed solution procedure. It is shown that relative difference between experimentally and
theoretically predicted results of the final radius of curvature of the formed beam is 0.17770.683%,
if also the effect of pre-strain on elastic modulus is taken into consideration.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Either as vital parts of load-bearing structures in mechanical
and civil engineering or merely as an aesthetic feature in archi-
tecture, curved beams are most commonly made via some sort of
forming process. V-bending, roll-bending, air and edge-bending,
hydroforming, etc. are some of the examples of technological/
manufacturing processes for obtaining the desired shape. The
prediction of the (final) shape can be a complex task, especially
because real-life materials often exhibit nonlinear mechanical
response to loading.

In the forming process, the material undergoes elastic–plastic
deformations. The plastic part of deformation changes the original
shape of the object permanently, whereas the elastic part returns
the deformed shape back towards initial configuration. Since a
certain amount of elastic deformation is practically always present,
the final shape of the object is not the same as the shape of the
forming tool itself. A common way to deal with this problem is to
add special techniques to reduce the effect of elastic recovery (also
known as springback), such as extra features in radii, using smaller
radii, or varying blankholder force in the forming process. These
techniques reduce the effect of springback, but the formed part
will always tend to springback by a certain amount.

In the available literature one can find a considerable number
of papers devoted to this subject. Kosel et al. [1] presented an
analytical solution of the simplified model for predicting the
springback of beams made from material with an elastic-linear
hardening response. The beams were subjected to repeated pure
bending and unbending process and complete strain history was
considered. The influence of axial force on the bending and
springback of the elastic–ideal plastic beam was investigated by
Yu and Johnson [2]. Johnson and Yu [3] developed formulas for
springback of beams and plates undergoing linear work hardening.
Springback of equal leg L-beams subjected to elastic–plastic pure
bending was described by Xu et al. [4]. A theoretical model to
predict the final geometrical configurations of wires made of
different materials after loading and unloading was proposed by
Baragetti [5]. Although analytical solutions can be obtained only
for relatively simple problems. Their advantage is that they enable
better insight and understanding of the problem and the influence
of the process parameters. For more complex problems, however,
the general practice is to refer to numerical techniques. Thus Li
et al. [6] analyzed draw-bend tests of sheet metals using finite
element modeling, where some of the results have been compared
with experiments. The error associated with numerical through-
thickness integration was investigated by Wagoner and Li [7]. The
prediction model for springback in a wipe-bending process was
developed by Kazan et al. [8] using artificial neural network
approach together with the finite element method. Panthi et al.
[9] analyzed and examined the effect of load on springback of a
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typical sheet metal bending process using a large deformation
algorithm. Furthermore, Ragai et al. [10] investigated the influence
of sheet anisotropy on the springback of drawn-bend specimens
by means of experiments and finite element analysis. Vladimirov
et al. [11] developed a finite strain model by combining both
nonlinear isotropic and kinematic hardening, where for the
integration of the equations a new algorithm based on an
exponential map was used. An interesting phenomenon, a
decrease of elastic modulus, can be observed in experiments on
(e.g. metal) materials during plastic deformation. Ghaei [12]
presented a numerical procedure which took into account also
this effect. He implemented the elasto-plastic constitutive laws
assuming elastic modulus as a function of effective plastic strain.
The evolution of the elastic modulus with plastic deformation was
also studied in other papers, see e.g. [13–20]. The change of elastic
modulus during unloading is usually described by introducing the
linear chord modulus [14,19,20] in many practical applications.
However, experimental studies have shown that the elastic defor-
mation during unloading is not perfectly linear. In work done by
Sun and Wagoner [18] a new concept of quasi-plastic-elastic (QPE)
strain was introduced within the continuum framework to model
the nonlinear unloading behavior. It was shown that QPE concept
is superior to the linear chord modulus in accurate prediction of
springback in cases when the unloading stops at non-zero stresses.

These studies of elastic–plastic deformations of beams are
mostly limited to symmetric cross-sections. Here, we present the
solution procedure for elastic–plastic bending and springback of
beams with asymmetric cross-sections. Elastic-nonlinear harden-
ing behavior of the material is assumed and both isotropic and
kinematic hardening models are considered. The strains are
described as a function of rotation and shift of the neutral axis
and the curvature of the beam. Exact geometric expressions for
large deflections and large rotations are used during bending
process. Strains, on the other hand, are considered to remain
small. A complete loading history, including the effect of the local
loading during the monotonic decrease of the load, is taken into
account. Numerical examples confirm a strong influence of the
load on the final and springback rotation of the neutral axis, its
shift, and curvature of the beam for different cross-sections and
materials. Generally, forming of beams with asymmetric cross-
sections involves also torsional deformations, which we do not
consider in our computations. Instead we find a special combina-
tion of forming parameters to constrain (to remove the effect of
torsion from) an asymmetric rectangular L-beam to deform in one
plane. Note that the presented solution procedure can easily be
used for more complex shapes of cross-sections. We also present a
custom-made forming tool, designed and manufactured in-house
to experimentally evaluate the proposed solution procedure.
Practically perfect planar shapes of the beams are obtained after
forming, showing an excellent agreement with theoretical predic-
tions, especially when the effect of the pre-strain on elastic
modulus is considered.

2. Formulation of the problem

We consider a beam of asymmetric cross-section subjected
to the bending moment M(t) in direction α, as shown in Fig. 1,
and assume an isotropic, homogeneous material which exhibits
elastic-nonlinear hardening behavior. The yield point is defined
by non-negative parameters σ0 and ε0 (cf. Fig. 3). Suppose that
the beam is stress-free before loading and that the mechanical
response can be described by

σðε; ε0;σ0Þ ¼
f eðεÞ for jεjrε0

f pðε; ε0;σ0Þ for jεj4ε0;

(
ð1Þ

where f eðεÞ and f pðε; ε0;σ0Þ represent stress–strain response in the
elastic and plastic regions, respectively. Both isotropic and kine-
matic hardening models are considered.

Exact geometric expressions for large deflections and large
rotations are taken into account during bending process. Following
the Euler–Bernoulli theory, valid for slender beams, a strain
distribution over the cross-sectional area due to bending can be
described by the following expression:

ε¼ �κz
¼ �κðzC�zsÞ
¼ �κð�ðy�YCÞ sinβþðz�ZCÞ cosβ�zsÞ; ð2Þ

where κ ¼ 1=r is the curvature of the beam (and r is its radius of
curvature), β is the rotation of the neutral axis, zs is the shift of the
neutral axis from the centroid and YC, ZC are the coordinates of the
centerline taken from the reference coordinate system y–z (see
Fig. 1). The neutral axis is found from the no-strain condition,
ε� 0. In the case of a linear elastic beam the neutral axis goes
through the centroid of the cross-section.

Equations of static equilibrium of the beam ∑i F
!

i ¼ 0 and

∑iM
!

i ¼ 0 and static equilibrium of the infinitesimal element yield
dMy=ds¼ 0 and dMz=ds¼ 0 (My, Mz are constants) in the case of
pure bending, where s is a curvilinear coordinate along the length
of the deformed beam (note that curvature κ ¼ dϑðsÞ=ds, where
ϑðsÞ is the angle of inclination of the plane, tangent to the beam's
neutral surface, at the local coordinate s). The stress resultants are

N¼
Z
A
σ dA; My ¼ �

Z
A
σz dA; Mz ¼

Z
A
σy dA; ð3Þ

where N represents inner axial force, My and Mz are inner bending
moments in directions of y-axis and z-axis, respectively, and σ is
the normal stress. Due to the nonlinearity of the problem, the
computation of integrals in Eq. (3) is numerical. The integration
domain (the cross-section) is divided into n rectangular elements.
A generic element Ai, iAf1;2;…;ng (cf. Fig. 1) is defined by four
nodes in which the mechanical properties are known. Since a
complete loading history has to be considered and the effect of the
local loading during the monotonic decrease of the bending
moment occurs (and vice versa in monotonic increase of the load
in non-virgin material), the bending moment MðtÞ : 0-Mmax and
Mmax-0 is applied incrementally, as shown in Fig. 2. Here variable
t represents a pseudo-time, which is used to follow successive
increments of the load (and stress and strain).

The mechanical state corresponding to the current load Mðt0Þ
thus includes a complete loading history. Since the strain in each
node of the cross-section εt0 �Δt

j , jAf1;2;…;nNg (where nN is the
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Fig. 1. Bending stress and strain state in the cross-section of the beam.
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