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a b s t r a c t

Kant's higher order beam kinematics, which takes into account both the longitudinal and transverse
higher order deformation of beam, is applied to the dynamic model of two-layer partial interaction
composite beams. To establish and solve the mathematical problem, the finite element for the
composites is then formulated using the principle of virtual work. Furthermore, the finite element of
Timoshenko composite beam model, for the purpose of comparison, is also given in this paper. The
numerical performance and reliability of the proposed finite elements are verified through the
comparison with the results of ABAQUS using the plane stress model and those based on Reddy's
higher beam theory and classical beam theories from the literature. Besides, the responses to the seismic
and moving load of the proposed composite beam model are also presented, and subsequently the
influences of parameters including damping ratio, velocity of moving load, slenderness ratio and
interfacial stiffness on the mechanical behavior are studied. Numerical results show that the present
higher order composite beam model can achieve higher accuracy on the dynamic analyses than the
classical and Reddy's models, and the impact effects of moving load together with the partial interaction
between sub-layers should be considered.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Many advantages can be found in the composite structures over
their isotropic counterparts, e.g. the steel–concrete composite struc-
tures possess a higher ratio of strength to weight than the conven-
tional reinforced concrete structures. As a result, this type of structure
has received a wide range of applications in civil engineering, aero-
space, automotive, etc. Usually, the flexible shear studs are used in the
interface to connect each sub-layer of composite beams, which may
cause the interfacial slip between sub-layers. To study the slip effects,
the first two-layer steel–concrete composite beam model, taking into
account the partial interaction, was proposed by Newmark et al. [1] in
1951. In the model, each sub-layer was described by small deformation
Euer–Bernoulli beam theory (EBT), which neglected the shear defor-
mation throughout the beam body. This assumption, however, implies
that the mechanical behavior may not be precisely predicted for deep
composite beam structures [2] due to the significant shear effect; thus
the necessity arises to refine their model.

Fairly recently, the Newark's model has been refined by a great
deal of investigators [3–8] to take into account the shear deforma-
tions using the Timoshenko beam kinematics. Either by finite

element method (FEM) or analytical one, the linear static analyses
of composite beams were performed by Refs. [6–9]. For the dynamic
problems, many studies can also be found to research the linear
dynamic characteristcis [5,10,11] and nonlinear free vibration pro-
blem [12]. However, what has to be noted is that the shear correction
factor introduced by Timoshenko beam theory (TBT) is attributed to
the cross-sectional geometry of each sub-layer as well as the
shearing stress around the section [13], i.e. this factor is no longer
constant during the deformation for the sub-layers of composite
beams, and it was also demonstrated by He and Yang [2]. To avoid
the problem caused by the correction factor, higher order beam
theory (HBT) has received much attention [13–15], whose kinematics
is even more elaborate than that of the TBT. Using Reddy's [16] HBT,
where a third order polynomial is taken to approximate the axial
displacement of sub-layers, Chakrabarti et al. [14,15] studied the
static response of two-layer composite beams within linear and
elastic range, and Chakrabarti et al. [13] extended it to the range of
dynamics problems by FEM. Besides, Subramanian [17] developed a
displacement based finite element for free vibration analysis of
composite laminated beams, and outlined the analytical procedure
for free vibration of beams using two types of HBTs; Li et al. [18]
developed an exact finite element to conduct the free vibration
analysis of laminated beams using hyperbolic shear deformation
theory, and Vo and Thai [19] performed the static analysis of
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laminated beams by FEM based on various refined higher order
deformation theories [20].

Most of the HBTs, including the Reddy's HBT, tended to neglect the
transverse deformation of the beam, thereby, neglected the transverse
normal strain and stress. To our point of view, capturing the transverse
normal stress of sub-layers caused by the interfacial pressure or
tension may reduce the gap from beam model to plane stress model.
Trying to achieve this, Kant's [21–23] HBT is used in this study, where
both the longitudinal and transverse higher order displacements are
considered by approximating displacement in these two directions as
third and second order polynomials, respectively. Subsequently, a
dynamic model for two-layer composite beams, whose sub-layers
follow Kant's HBT, is proposed by virtue of the principle of virtual
work. And the finite element for the transient response and free
vibration analyses is also developed. For the purpose of comparison,
the finite element formulation for two-layer composite beam model
based on TBT is also given. The improvement of the incorporated
transverse deformation on the accuracy is examined through the
comparisons among the results of composite beams using plane stress,
Reddy's HBT and classical beam theories for the free vibration
problem. In addition, the seismic analyses are carried out to investigate
the performances of the present composite beam model on the
transient response analysis. Finally, the responses of the composite
beams to themoving load are also studied, especially to investigate the
effects of the moving velocity and damping ratio of structure on the
composite beam deflection.

2. Formulations

2.1. Description of problems and assumptions

Let us consider a straight, planar, two-layer composite beam with
possibly different cross-sections and materials including flexible
shear connectors uniformly smeared over the interface. Sub-layers
with overall span L, as is shown in Fig. 1(a), are marked with c and s.
The layers are placed in Cartesian coordinate systems x–zc and x–zs,
which originate from the centroid of each layer at the left end. And
depths h1 and h2 are set to denote the centroid-interface distances of
layers c and s, respectively. Both the longitudinal and transverse
displacement field assumption for each layer are presented in Fig. 1
(b), where functions Ui andWi, i¼c, s denote the axial and transverse
displacements throughout layers c and s, respectively. From Fig. 1(b),
it can be foreseen that the transverse normal stress is going to
influence the mechanical behavior, and the higher order shearing
stress over the depth can be captured.

The basic assumptions of the present composite beammodel are
(1) the materials of the beams are linear elastic, and the displace-
ment and rotation of the beam are small; (2) the tangential and
normal interface resistances are proportional to the relative slip and
separation at the interface, and (3) the displacements of each layer
follow the present kinematics, as is shown in Fig. 1(b).

2.2. Kinematics

According to the hypothesis of small deformation Kant's higher
order displacement assumption [22] (see Fig. 1(b)), axial displacement
fields for the upper layer c and lower layer s can be expressed in a
form of

Uiðx; ziÞ ¼ ∑
3

n ¼ 0
ui nðxÞzni ; i¼ c; s ð1Þ

and the transverse displacement fields can be formulated as

Wiðx; ziÞ ¼ ∑
2

n ¼ 0
wi nðxÞzni ; i¼ c; s ð2Þ

where Ui and Wi are the axial and transverse displacements of layer i
at arbitrary point of initial configurations, respectively; ui nðxÞ and
wi nðxÞ are the basic unknowns to be solved.

Theoretically speaking, there can be more terms of higher order
displacement components in Eqs. (1) and (2) so as to reduce the gap
from the plane stress model to the higher order beam model,
according to the theory of Taylor-series expansion. However, the
computation burden is to increase with the increase of number of
higher order terms in Eqs. (1) and (2). Therefore, determining the
reasonable number of such terms is of significance. As is known that
the distribution of shearing stress over the beam depth is very close
to parabola in the plane stress model, the axial and transversal
displacements of the beam are chosen, respectively, as third and
second order polynomials, in order to ensure the parabolicly dis-
tributing shearing stress.

The basic unknowns of the above kinematics are independent,
which is different from Reddy's HBT, where his basic unknown
terms are partly [13] or completely [16] eliminated by satisfying
the shearing stress boundary conditions on the cross-section edge.
Moreover, the transverse displacement is assumed to be constant
at the same cross-section in Reddy's HBT [16], thereby, the
transverse normal stress is neglected, while the present model,
as is expressed in Eq. (2), assumes that the transverse displace-
ment varies as a second order polynomial, which can capture a
linearly distributing transverse normal stress.

2.3. Finite element formulation

According to the principle of virtual work, the transient
dynamic problem of the present composite beams can be for-
mulated as

∑
i ¼ c; s

Z
Vi

σi xδεi xþσi zδεi zþτiδγi
� �

dViþ
Z L

0
kuucsδucsþkw wcsδwcs
� �

dx

¼ ∑
i ¼ c; s

Z
Vi

�ρi
€UiδUi

� �
dViþ

Z
Vc

�ρi
€WiδWi

� �
dVi

� �
þ

Z L

0
qðx; tÞδWc
� 	

dx

ð3Þ

Fig. 1. Profile of partial-interaction composite beams and axial displacement field of higher order composite beams. (a) Elevation and cross-section. (b) Displacement
assumption.
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