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a b s t r a c t

The three-dimensional motion of flow due to the rotation of a viscous fluid at a sufficiently large distance
from a stationary disk, the so-called classical Bödewadt boundary layer flow, is extended in this paper for
the first time in the literature to the case where the stationary disk is permitted to uniformly stretch in
the radial direction. The effects of such a stretching mechanism on the flow and heat characteristics are
of present concern for this physical problem. A conventional transformation is shown to lead to a set of
similarity equations which are coupled and highly nonlinear. It is found that the traditional Bödewadt
boundary layer is greatly altered under the influence of radial stretching of the wall. As a consequence of
reduction in the momentum boundary layer, the thickness of the thermal boundary layer is also
observed to considerably decrease even for moderate strength of stretching. This outcome is
prominently important from the technological point of view since the radial stretching may serve to
cool down the system in practical applications.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A great deal of attention has been paid in the past decade to the
traditional Von Karman flow and heat transfer, for which the motion
is driven by a rotating disk. Its cousin problem constitutes one of the
classical problems of fluid mechanics such that the motion is super-
imposed owing to the fluid rotating with a uniform angular velocity
at a larger distance from a stationary disk. However, although this
case also possesses theoretical as well as practical importance, for
example in understanding the dynamics of tornadoes and hurri-
canes, and rotor–stator systems in turbines, less research has been
conducted to understand its physical insight. Therefore, the current
work is devoted to the three-dimensional revolving flow motion and
heat induced by a stationary disk, but unlike to the classical case as
considered in the past studies, a disk with a uniform stretching in the
radial direction is taken into account here for the first time in the
literature.

Bödewadt boundary layer flow occurs due to a rotating flow over a
stationary disk and it represents a full analytical solution of the
Navier–Stokes equations, since it was first theoretically investigated by
Bödewadt [1]. For the example of the conventional rotating disk
problem [2], the fluid forced outwards by the centrifugal force is
replaced by a fluid stream in the axial direction. On the other hand, a
reverse effect is observed for the revolving flow over a stationary disk,
so that the fluid drawn to the axis of rotation is swept upwards, a

phenomenon as a result of the radial pressure gradient being balanced
by the centrifugal force. In the book by Schlichting [3] it was cited that
“The secondary flowwhich accompanies rotation near a solid wall can
be clearly observed in a tea cup: after the rotation has been generated
by vigorous stirring and again after the flow has been left to itself for a
short while, the radial inward flow field near the bottom will be
formed. Its existence can be inferred from the fact that tea leaves
settle in a little heap near the center at the bottom.”

After the theoretical work of Bödewadt [1], the Bödewadt bou-
ndary layer was first observed on the flow on a rotor–stator system,
see Batchelor [4]. The books by Owen and Rogers [5] and Shevchuk
[6] give much significant information on flow and heat transfer in
single rotating or double stationary/rotating systems and their
applications. The recent studies of Sahoo et al. [7] and Sahoo and
Sebastien [8] enlighten us about Bödewadt flow and heat transfer of
a non-Newtonian Reiner–Rivlin fluid. The hydrodynamic stability of
the flow produced over an infinite stationary plane in a fluid rotating
with uniform angular velocity at an infinite distance from the plane
was considered by Mackerrell [9] and Lopez et al. [10]. The possible
occurrence of absolute instability mechanism was investigated by
Jasmine and Gajjar [11].

The classical three-dimensional Von Karman viscous pump
problem was recently extended by Fang [12] to the situation
where the rotating disk is also radially stretching. The flow
induced by a stretching boundary is known to be extensively
important in the extrusion processes in plastic and metal indus-
tries [13,14]. Turkyilmazoglu [15–18] studied the linear and
exponential radial stretching in magnetohydrodynamic rotating
disk flows of traditional Von Karman. Such a treatment was also

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ijmecsci

International Journal of Mechanical Sciences

http://dx.doi.org/10.1016/j.ijmecsci.2014.10.022
0020-7403/& 2014 Elsevier Ltd. All rights reserved.

n Tel.: þ90 3122977850; fax: þ90 3122972026.
E-mail address: turkyilm@hacettepe.edu.tr

International Journal of Mechanical Sciences 90 (2015) 246–250

www.sciencedirect.com/science/journal/00207403
www.elsevier.com/locate/ijmecsci
http://dx.doi.org/10.1016/j.ijmecsci.2014.10.022
http://dx.doi.org/10.1016/j.ijmecsci.2014.10.022
http://dx.doi.org/10.1016/j.ijmecsci.2014.10.022
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2014.10.022&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2014.10.022&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2014.10.022&domain=pdf
mailto:turkyilm@hacettepe.edu.tr
http://dx.doi.org/10.1016/j.ijmecsci.2014.10.022


implemented on the traditional Jeffery–Hamel flow in the very
recent work [19].

In the literature the Bödewadt flow of a viscous fluid has not
been at all elaborated when the stationary disk is set to a radial
stretching. Hence, our motivation here is to fill this gap and
generalize the classical Bödewadt flow under a stretchable wall
condition. To serve to this aim, a spectral technique based on
Chebyshev collocation is employed to numerically simulate the
nonlinear partial differential equations of motion. Not only the flow
but also the temperature field is mathematically analyzed. It is
found that the radial stretch acts to cool down the wall, which is
certainly important in engineering applications.

The rest of the paper is based on the subsequent strategy. The
governing equations and their similarity counterparts are high-
lighted in Section 2. Section 3 discusses the results obtained.
Conclusions are eventually drawn in Section 4.

2. Governing and similarity equations

The physical problem is formulated in the cylindrical coordi-
nates ðr;θ; zÞ such that the stationary wall is situated at z¼0. The
motion arises by the rotation of the fluid like a rigid body with
constant angular velocity Ω at far distances from the disk surface.
For reasons of axial symmetry the derivatives along the polar
coordinate θ will be dropped. The flow field is represented by the
vector u whose radial, tangential and axial velocity components
are ðu; v;wÞ, respectively. The fluid is supposed to be Newtonian
and viscous having the pressure p and density ρ. The fluid
temperature is denoted by T such that the surface of the disk is
maintained at a uniform temperature Tw. Far away from the wall,
the revolving stream is kept at a constant temperature T1. It is
also assumed that the fluid properties, viscosity (μ), thermal
conductivity coefficient (κ), specific heat at constant pressure (cp)
and density (ρ) are all constants. The disk is further stretching at a
uniform rate s in the radial direction r. Fig. 1 exhibits the flow
description and geometrical coordinates. The governing Navier–
Stokes and energy equations are then given by, see for instance
[3,12,16],

∇ � u¼ 0; ð1Þ

ρðu �∇Þu¼ �∇pþμ∇2u; ð2Þ

ρcpðu � ∇ÞT ¼ κ∇2T : ð3Þ
The boundary conditions accompanying (1)–(3) are

u¼ sr; v¼ 0; w¼ 0; T ¼ Tw at z¼ 0
u¼ 0; v¼Ωr; T ¼ T1 as z-1; ð4Þ

It is also known that the radial pressure gradient balances the
centrifugal force at the frictionless regime, that is

1
ρ
∂p
∂r

¼ rΩ2; ð5Þ

and in the framework of the boundary layer theory it is assumed
that the viscous layer near the wall is also predominated by the
action of the same pressure gradient.

By means of the dimensionless axial distance η¼ ð
ffiffiffiffiffiffiffiffiffiffi
Ω=ν

p
Þz, the

form of similarity transformations is similar to those of conven-
tional Von Karman flow [2], which are

ðu; v;wÞ ¼ ðrΩFðηÞ; rΩGðηÞ;
ffiffiffiffiffiffiffiffi
νΩ

p
HðηÞ;

ðp; TÞ ¼ ðp1�ρνΩPðηÞ; T1þðTw�T1ÞθðηÞÞ: ð6Þ
Introducing Eqs. (5) and (6) into the governing equations (1)–(3),
we obtain a system of ordinary differential equations that is nearly
analogous to that stated in [16]:

H0 þ2F ¼ 0;

F″�F2þG2�HF 0 �1¼ 0;

G″�2FG�HG0 ¼ 0;

θ″�PrHθ0 ¼ 0: ð7Þ
Here, a prime denotes derivative with respect to η and Pr¼ μcp=κ
is the Prandtl number. The boundary conditions (4) are also
converted to

F�C ¼ G¼H¼ θ�1¼ 0 at η¼ 0
F ¼ G�1¼ θ¼ 0 as η-1; ð8Þ
where C ¼ s=Ω denotes a stretching strength parameter measuring
the ratio of radial stretch to swirl such that C¼0 corresponds to
the classical non-stretching case. It should be remarked that
Eqs. (7) and (8) differ from those given in [16] by the fact of the
first momentum equation and also boundary conditions. After the
principal solution had been obtained, the exact solution of the
Navier–Stokes equations can be completed by calculating the
pressure from the third momentum equation from (2), which is
straightforward and hence omitted here.

Evaluation of the basic flow enables us to determine the skin
friction at the wall as well as the heat transfer rate which are of
practical importance. Hence, Newtonian formulae are made use
for the tangential shear stress τθ and radial shear stress τr:

τθ ¼ μ
∂v
∂z

� �
z ¼ 0

¼ μRΩ

ffiffiffiffiffi
Ω
ν

r
G0ð0Þ;

τr ¼ μ
∂u
∂z

� �
z ¼ 0

¼ μRΩ

ffiffiffiffiffi
Ω
ν

r
F 0ð0Þ; ð9Þ

which results in the total skin friction coefficient:

Cf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2r þτ2θ

q

μrΩ
ffiffiffiffiffiffi
Ω
ν

r ¼ ðF 0ð0Þ2þG0ð0Þ2Þ: ð10Þ

Another physically interesting parameter is the total volume
flowing towards the axis taken over a cylinder of radius R around
the z-axis:

Q ¼ 2πR
Z 1

z ¼ 0
u dz¼ �πR2

ffiffiffiffiffiffiffiffi
Ων

p
Hð1Þ; ð11Þ

z

r
rs

u

v

w

Fig. 1. Configuration of the flow and geometrical coordinates.
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