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a b s t r a c t

An analytical solution for the effective yield surface of the KELVIN cell is presented. Several local strength
and yield criteria are applied like VON MISES, maximum principal normal stress with and without tension/
compression asymmetry. These criteria are representative for the yielding or failure of different ductile or
brittle materials. Their influence on the effective failure behaviour of foams is investigated. An efficient
numerical method is derived to determine anisotropic initial and subsequent yield surfaces for open-cell
foams. It is applied to the KELVIN cell model and used to verify the analytical solution. The results are used
to determine the conservative, isotropic minimum yield surface for the KELVIN cell. The properties of the
different effective yield surfaces are evaluated and discussed.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Cellular materials are more and more used as engineering
material. There are manufacturing methods, which allow the
deliberate manipulation of the effective material behaviour by
changing the foam morphology, e.g. selective laser sintering.
Foamed components can be analysed on different length scales:
micro-scale (bulk material), meso-scale (foam topology and mor-
phology) and the macro-scale (effective component behaviour).
The homogenised, effective behaviour of course depends on the
bulk material but also strongly on the foam structure, e.g. pore
shape, cell walls, and strut forms [5].

An essential engineering task is to describe the effective com-
ponent behaviour. The computational effort for simulations, which
contain two or more length scales, is huge. Such simulations are
strongly restricted by the computing power and main memory.
There are methods for multi-scale simulations, which reduce the
computational effort, like FE2. Another method is to completely
separate the scales and to determine an effective material beha-
viour for the smaller scales using homogenisation, which gives the
constitutive equations for the corresponding parent scales. The
homogenisation method in mechanics can be used if the stress
and strain fields can be separated on the different scales (scale
separation [12]). The characteristic length of the mesostructural
fluctuations has to be smaller than the representative volume of
the mesostructure, which must be smaller than the characteristic

length of the macrostructural fluctuations. For strong stress and
strain gradients on the macro-scale the separation conditions can
be violated and have to be checked.

The determination and evaluation of effective elastic constants
of cellular materials has beenwell investigated [30,26,29,10,20,19],
whereas the nonlinear material response is still subject of current
research. Performing experiments to determine failure and yield
surfaces is challenging. Some results are presented for example in
Thornton and Magee [23], Gibson and Ashby [9], Triantafillou et al.
[25], Triantafillou and Gibson [24], Deshpande and Fleck [7],
Degischer and Kriszt [5], Combaz et al. [3]. There are also models
for the failure surfaces of brittle cellular materials, e.g. Triantafillou
et al. [25], Theocaris [21], Hanssen et al. [11], Piccolroaz and Bigoni
[18], Bartl [2], and Daxner [4]. Many simulation approaches of
foam structures for strongly nonlinear, path dependent behaviour
make use of the nested finite element method FE2 [14,17]. In this
kind of multi-scale simulation the macro-scale simulation calls a
corresponding meso-scale model at every GAUSSIAN point assigning
the current local deformation state. The material response is thus
determined by the underlying meso-scale simulation, and the full
path-dependent material behaviour can be captured. Especially,
for complex macroscopic material behaviour, the FE2 method can
overcome the challenges to provide a closed form constitutive
model for the macro-scale. But this method requires huge com-
putational power due to the number of meso-scale simulations
and can be succeeded only by parallel high performance
computations.

The other approach is to identify constitutive equations by
performing classical homogenisation of the meso-scale. Once this
effective material law is obtained for a specific kind of foam the
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simulation on the macro-scale is an ordinary one-scale simulation
and there are no special hardware requirements. The effective
elastic–plastic material law requires to determine the effective
elastic constants, but also the yield surface and the yield surface
evolution by means of meso-scale simulations. Analyses of the
yield surface and subsequent yield surfaces of foams are presented
e.g. in Laroussi et al. [15], Wicklein and Thoma [28], Demiray [6],
and Daxner [4]. The classical homogenisation method is used to
obtain the relation between effective stresses and strains. The
procedure presented in these papers to localise the yield stress
along a load path requires several elastic–plastic simulations steps.
The deviation of the result from the exact value depends on the
number of these steps. Furthermore, the resolution of the yield
surfaces depends on the number of analysed load paths. The
presented results are determined for a specific choice of effective
principal axes, which means the anisotropy of the yield surfaces is
neglected.

In this work we analyse the limits of the linear elastic domain
of the open-cell KELVIN foam. This can be the failure surface for
brittle ceramic foams or the yield surface for foams with elastic–
plastic bulk material. Moreover, the anisotropy of this surface is
investigated and its importance for conservative component
design is shown by comparison with the isotropic minimum sur-
face. Finally, an analytical solution for the anisotropic yield surface
of the KELVIN cell is presented and the influence of several yield and
strength criteria is analysed.

The presented numerical method to determine the effective,
initial and subsequent yield surfaces is based on classical homo-
genisation theory using representative volume elements (RVE) and
the assumption of a linear elastic domain on the meso- and macro-
scale. Each effective, anisotropic initial yield surface can be
determined from six independent load cases of a linear-elastic
simulation. One nonlinear simulation and six linear simulations
are sufficient for every subsequent yield surface. For nonlinear
processes with small deformations and if the elastic properties of
the bulk material remain the same the six linear simulations can
be performed once for all subsequent yield surfaces. Thus, the
resolution of the yield surface is decoupled from the number of
required simulations. The assembly of the yield surface requires a
more complex post-processing, but with much less computational

effort than solving the boundary value problem of the RVE. In the
current paper the method is applied to a beam model of the KELVIN

cell, which allows to determine the minimum surface in reason-
able time. But the method is further the basis to determine the
yield and failure surface of volumetric models and stochastic foam
structures, which is the content of an upcoming publication of the
authors. The huge computational effort needed for such models
makes it inexpedient to apply methods previously presented in
the literature [6,4]

The method has the potential to improve the performance of
FE2 simulations. Because the check for an elastic step and the
calculation of the elastic result using the presented method are
computationally cheap the performance of any linear-elastic step
of the macroscopic GAUSSIAN points is in the same order as for the
classical FEM. For a recognised nonlinear step the classical pro-
cedure of the FE2 method is used.

2. Model description

2.1. Topology of the KELVIN cell

The KELVIN cell was first introduced by Lord Kelvin (Sir William
Thomson) [22,27] when he was studying soap froths. It is a simple
periodic cell structure with very low surface energy. The structure
of the so-called characteristic KELVIN unit cell is used as RVE of the
KELVIN foam and shown in Figs. 1 and 2. All struts have a length of
l0, thus the entire cell model length l is 2

ffiffiffi
2

p
l0. The struts (and

walls) of natural KELVIN cells are slightly curved and the cross-
section area of the struts varies along the strut axes. These details
have been shown to be important for mechanical models but are
often neglected for the sake of simplification [20,19].

The KELVIN cell has octahedral symmetry. It is mechanically
cubic orthotropic. The anisotropy factor depends on the strut
geometry. A coordinate system is introduced with its origin placed
at the centre of this RVE (hexagon) and the axes intersect the RVE
boundaries perpendicularly.

Fig. 1. KELVIN foam with highlighted characteristic KELVIN unit cell [10].

Fig. 2. Parallel octahedral plane projection of a characteristic unit cell of a periodic
KELVIN foam seen from point [1,1,1].
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