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a b s t r a c t

This paper is to investigate the thermoelastic response of an elastic medium with variable material
properties under the transient thermal shock. The governing equations involving temperature-
dependent properties are proposed by the Clausius inequality and generalized theory of thermo-
elasticity with one thermal relaxation time, where the higher order expansion with respect to increment
temperature of the Helmholtz free energy is used to describe the relations of each material parameter
with real temperature. The problem of a thin plate composed of titanium alloy, subjected to a sudden
temperature rise at the boundary, is solved. The propagations of thermoelastic wave and thermal wave,
as well as the distributions of displacement, temperature and stresses, are obtained and discussed. The
comparison of present results with those obtained from the case of constant material properties are
conducted to reveal the effect of the temperature dependency of material properties on thermoelastic
response. The comparison with the results obtained from the case that each material parameter is the
function of fixed temperature is also conducted to explain the coupling effect between variable material
properties and temperature distribution.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The requirement for thermo-mechanical properties of materi-
als is growing with its extensive applications in aerospace, nuclear
reactors, pressure vessels and pipes, and other engineering areas.
In recent years, the research on thermoelastic behavior of mate-
rials in some severe environment, such as elevated temperature,
severe thermal gradient and magnetic field, has drawn great
attention [1–3]. Experiments [4] have proven that thermal signal
propagates in an elastic medium with a finite speed when heat
conduction takes place in a short time interval or the high heat
flux. Meanwhile, the material properties such as the modulus of
elasticity, Poisson's ratio, the thermal conductivity and the specific
heat are no longer constants at same conditions [5]. The Non-
Fourier effect [6] induced by finite heat propagation, as well as the
temperature dependency of material properties, would have sig-
nificant influence on thermoelastic response [7–9]. Based on the
generalized theories of thermoelasticity [10–12], admitting the
finite propagation velocity of thermal signal, Ezzat et al. [7],
Youssef [13], Aouadi [14], Othman and Kumar [15], Allam et al. [16]

and Abbas [17,18] investigated different thermoelastic problems
involving variable material properties, respectively, where the
assumption that material parameters are the linear functions of
reference temperature were used to simplify the solutions of
governing equations with variable material properties. Xiong and
Tian [19], and He et al. [20] considered the linear relations of
material parameters with real temperature, and pointed out that
the effect of temperature dependency of material properties on
thermoelastic response would be enhanced. Sherief and El-Latief
[21], Zenkour and Abbas [22] also solved a generalized thermo-
elastic problemwith variable material properties, where the linear
function and the exponential function of variable thermal material
parameters with real temperature were used to reveal the influ-
ence of temperature dependency on thermoelastic behavior.

It is noted that the governing equations, used to deal with
variable material properties in these investigations [7,13–22], are
derived by introducing some specific functions, which describe the
relations of each material parameter with reference temperature
or real temperature, into the formulations with constant material
properties. This treatment neglects the influence of variable
material properties on the inherent form of governing equations.
Based on the Clausius inequality and conventional theory of
thermoelasticity [23], Dillon [24] and Wang [25] derived the
governing equations of an isotropic mediumwith variable material
properties, respectively, where the higher order expansions of the
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Helmholtz free energy with increment temperature were intro-
duced to obtain the functions of each parameter with real tem-
perature. They pointed out that the forms of constitutive equation
and associated thermoelastic equation were not changed, although
they were nonlinear under variable material properties, however,
the new term would generate in the right side of temperature
equation when involving variable material properties. This new
term can be regarded as an additional heat source and would have
some effect on thermoelastic response, especially for the large
deformation rate. Therefore, it is necessary to consider the changes
of governing equations in the following investigations of ther-
moelastic problem with variable material properties.

In this paper, the formulations of the isotropic medium with
temperature-dependent properties are proposed by the Clausius
inequality and L-S generalized theory [10], where the higher order
expansions of the Helmholtz free energy with respect to incre-
ment temperature are used to describe the relations of each
material parameter with real temperature. The problem of a thin
plate composed of titanium alloy, subjected to a sudden tem-
perature rise at the boundary, has been conducted. The propaga-
tions of thermoelastic wave and thermal wave, as well as the
distributions of displacement, temperature and stresses, which are
induced by boundary thermal shock, are obtained and plotted. The
comparison with the results obtained from the case of constant
material properties is conducted to reveal the effect of variable
material properties on thermoelastic interaction. The comparison
with the results from the case that each material parameter is the
function of fixed temperature is also conducted to explain the
coupling effect between variable material properties and tem-
perature distribution.

2. Formulations of the problem

Based on Clausius inequality, the strain tensor γij and the
entropy density φ can be expressed as

σij ¼
∂Ψ
∂γij

; ð1Þ

φ¼ �1
ρ
∂Ψ
∂T

; ð2Þ

where ρ is the mass density, T is the absolute temperature, Ψ ¼
Ψ γij;θ
� �

is the Helmholtz free energy per unit volume, and θ¼ T
�T0 is the increment temperature.

In order to obtain the constitutive relations of elastic medium,
the power series expansion of the Helmholtz free energy Ψ ¼Ψ

γij;θ
� �

with respect to strain tensor γij and increment temperature
θ is used to obtain the constitutive equations. As for an isotropic
material, the Helmholtz free energy Ψ ¼Ψ γij;θ

� �
can be expan-

ded in a power series with the following forms [25]:

Ψ ¼Ψ γij;θ
� �

¼ a0þa1I1þa2I2þa3I3þa4θþa5I
2
1þa6I1I2þa7I1I3þa8I1θþ⋯;

ð3Þ
where I1 ¼ γii, I2 ¼ 1

2 γiiγjj�γijγji
� �

and I3 ¼ detγij are the invariants
of strain tensors, a0, a1,⋯a8 are the material constants determined
by experiments of material properties.

To ignore the terms of higher than the second order of θ and γij
for expansion (3), the constitutive equation based on Eq. (1) can be
derived as

σij ¼ a1δijþ a2þ2a5ð Þγkkδij�a2γijþa8θδij; ð4Þ

where a1 is regarded as the initial normal stress and is zero in
natural state, and δij is the Kronecker delta.

Introducing Lame's constants λ, μ and thermoelastic coupling
coefficient β, then Eq. (4) can be rewritten as

σij ¼ λγkkδijþ2μγij�βθδij; ð5Þ
where λ¼ a2þ2a5, μ¼ �a2

2 , and β¼ �a8.
It is obvious that these material parameters are constants, and

the constitutive Eqs. (4) or (5) is the governing equation with
constant material properties. In order to consider the variation of
material properties with temperature, the third order or even
higher order terms with the increment temperature θ should be
taken into account in the following derivation. Here the following
expansions of Ψ ¼Ψ γij;θ

� �
including the third order terms of θ

are used:

Ψ γij;θ
� �

¼ a0þa1I1þa2I2þa4θþa5I
2
1þa8I1θþa9I2θþa10θ

2

þa11I
2
1θþa12I1θ

2þa13θ
3
: ð6Þ

Substituting expression (6) into Eq. (1) results in

σij ¼ λ0þλ1θ
� �

γkkδijþ2 μ0þμ1θ
� �

γij� β0þβ1θ
� �

θδij; ð7Þ
where λ0 ¼ a2þ2a5, μ0 ¼ �a2

2 , and β0 ¼ �a8 are Lame's constants
and thermoelastic coupling coefficient at the reference tempera-
ture T0, which are the same forms of the case with constant
material properties, λ1 ¼ a9þ2a11, μ1 ¼ �a9

2 and β1 ¼ �a12 are
regarded as the influence factors of temperature deviation, and a2,
a5,⋯a12 are material constants determined by the real relations of
the modulus elasticity and Poisson's rate with respect to
temperature.

The general forms of Eq. (7) with temperature-dependent
properties can be rewritten as

σij ¼ λ θ
� �

γkkδijþ2μ θ
� �

γij�β θ
� �

θδij: ð8Þ

Note that the constitutive Eq. (8) with variable material prop-
erties is nonlinear, while the constitutive Eq. (5) with constant
properties is linear. However, the governing equations have the
same from for two cases.

The equations of motion take the form:

ρ €ui ¼ ρf iþσij;j: ð9Þ
Substituting Eq. (8) into above motion Eq. (9), we have

ρ €ui ¼ ρf iþ λ θ
� �

γkk;iþ2μ θ
� �

γij;j�β θ
� �

θ;i

h i

þ λ1θ;iγkkþ2μ1θ;jγij�β1θ;iθ
h i

; ð10Þ

where ui is the displacement vector, and f i is the body force per
unit mass. Meanwhile, the superscript dot Uð Þ and the subscript
comma ;ð Þ denote the derivatives with respect to the time t and
coordinates xi i¼ 1;2;3ð Þ, respectively.

The energy balance equation takes the form:

qi;i ¼ ρr�ρT0φ ð11Þ
where r is the internal heat source per unit mass, and qi is the heat
flux vector.

Substituting Eq. (2) into Eq. (11) and considering the expression
(6) results in

qi;i ¼ ρr�ρcp _θþT0 λ1γkkδijþ2μ1γij� β0þ2β1θ
� �

δij
h i

_γ ij; ð12Þ

where cp ¼ �T∂φ
∂T ¼ cp0 þcp1θþcp2θ

2 is the specific heat,
cp0 ¼ 2a10þ2a12γkk

� �
T0, cp1 ¼ 2a10þ2a12γkkþ6a13T0

� �
, and

cp2 ¼ 6a13. For the constant strain tensor γij, the specific heat cp is
the quadratic function of increment temperature.

Due to the L-S theory of generalized thermoelasticity [10], the
modified heat conduction equation can be expressed as

qiþτ0 _qi ¼ �kT ;i; ð13Þ
where k is the thermal conductivity of the isotropic medium,
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