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a b s t r a c t

In this paper, the implicit integration of a quadratic yield criterion exhibiting Chaboche non-linear
kinematic and isotropic hardening is presented. A new expression of consistent tangent modulus is
derived and implemented in finite element programs. The non-linear global equilibrium equations as
well as the one single non-linear local equations obtained by fully implicit integration of the constitutive
equations are solved using the Newton method. The consistent local tangent modulus is obtained by
exact linearization of the algorithm. The performance of the present algorithm is demonstrated by
numerical examples where a quadratic convergence behavior can be observed.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Isotropic and anisotropic elastoplastic models are the appropriate
choices which define the ductile metallic material behavior. In
addition, efficiency and accuracy of finite element simulations of
elastoplastic behavior are very important because much of the
computational cost is due to the stress point integration algorithms
and the predicted behavior depends completely on the material
constitutive relations, [1]. Also, when studying the rate-independent
elastoplasticity problems, the notion of consistency between the
tangent operator and the integration algorithm plays a crucial role in
preserving the quadratic rate of asymptotic convergence of iterative
solution schemes based upon Newton's method, [2]. Many authors
are interested in these numerical research fields. They resolved, with
different methods, the complex elastoplastic constitutive equations
exhibiting non-linear isotropic/kinematic hardening.

Within the framework of J2 elastoplasticity, a consistent return
mapping algorithm for 3D and plane stress are developed in Simo and
Taylor [2,3]. The consistent elastoplastic tangent moduli are obtained
by exact linearization of the algorithm. Afterward, an algorithm for
implementation of combined non-linear isotropic/kinematic harden-
ing, where the later is formulated due to Armstrong and Frederick [4],
has been proposed by Doghri [5]. Here, the plastic multiplier and a
reduced stress tensor appear as unknowns in the resulting problem. It
follows that the number of unknowns is five or seven for two or
three dimensional problems, respectively. An alternative formulation
is presented first in Hartmann and Haupt [6] and second in Mahnken

[7], where the resulting problem is reduced to one equation, such
that only the plastic multiplier appears as an unknown. Also, the J2
plasticity combined with kinematic hardening model of Lemaitre and
Chaboche [8] is considered in the work of Halama and Poruba [9] to
establish the tangent modulus in numerical integration and its
influence on the convergence of Newton–Raphson Method. Halama
et al. [10] presented a numerical implementation of the cyclic plasticity
model based on the kinematic hardening rule of AbdelKarim and
Ohno [11] and its further application in fatigue life prediction.

Sheet metals generally present a significant anisotropy due to
their crystallographic texture. This anisotropy is the most important
aspect that should be taken into account when modeling inelastic
materials behavior. In addition, most engineering structures are
subjected to cyclic loading which leads to additional effects of
Bauschinger. Many advanced approaches have been developed to
describe plastic anisotropy for an accurate modeling of the experi-
mental behavior. The most widely used constitutive model is the
one based on the classical Hill'48 yield, proposed as a generalization
of the J2 plasticity yield function for anisotropic materials.

Dutko et al. [12] proposed a stress update algorithm for the Barlat
anisotropic yield criterion existing in Barlat et al. [13]. Kinematic
hardening is not considered in this algorithm where the plastic
multiplier and a reduced stress tensor appear as unknowns. Bouba-
kar et al. [14] defined a stress-computation algorithm taking into
account the anisotropic plastic behavior and the update of the
orthotropic frame directions within a finite-element simulation of
sheet-metal forming. Oliveira et al. [15] studied the influence of
work hardening models in springback simulation of Numisheet’05
Benchmark #3, considering dual phase material (DP600). The Hill’48
yield criterion is used and the unknowns in the resulting problem are
the plastic multiplier and a reduced stress tensor. Kim et al. [16]
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developed elastoplastic constitutive equations for highly anisotropic
and asymmetric materials. In this contribution, the Drucker–Prager
yield criterion is used and modified by adding anisotropic parameters
and initial components of translation. In Cardoso and Yoon [17], the
backward-Euler method are combined with a non-quadratic aniso-
tropic yield functions to predict accurately the behavior of aluminum
alloy sheets for sheet metal forming processes. A large number of
unknowns, 12 at least, appear in the resulting problem. In order to
characterize the material coefficients, including the Bauschinger ratio
for the kinematic hardening model, one element tension-compression
simulations were tried based on a polycrystal plasticity approach. The
developed model was applied for a springback prediction of the
NUMISHEET’93 2D draw bend benchmark example.

A modification of the isotropic hardening model is adopted in
Chun et al. [18,19] to predict accurate hardening under cyclic loading
conditions. The model is implemented into a user-defined material
subroutine (UMAT) into ABAQUS/Standard code based on the fully
implicit backward Euler's method. The modified isotropic hardening of
Chun et al. [18] is adopted in Safaei et al. [20]. Here, a non-associated
plane stress anisotropic constitutive model with mixed isotropic/
kinematic hardening is used. The quadratic Hill 1948 and non-qua-
dratic Yld-2000-2d yield criteria of Barlat et al. [21] are considered in
the non-associated flow rule model. In this work, the resulting
problem is reduced to 10 equations. Solving these 10 equations, at
each integration point, need a large computation time. Taherizadeh
et al. [22,23] developed an anisotropic material models based on both
associated and non-associated flow rules, respectively and mixed
isotropic/kinematic hardening. These models are implemented into a
user-defined material (UMAT) subroutines for the commercial finite
element code ABAQUS to predict the springback of Numisheet’05
Benchmark#3. In these two works, the consistent tangent matrix is
not obtained by exact linearization of the algorithm but by only
modifying the elastic tangent matrix in the continuum elastoplastic
tangent matrix. Vladimirov et al. [24] discussed the application of a
finite strain model to predict springback in sheet forming. Both iso-
tropic and kinematic hardenings are used in a new algorithm based
on the exponential map. The resulting problem is reduced to 13
equations.

The objective of this work is to develop a one-equation integration
algorithm of a generalized quadratic yield criterion with consistent
tangent operator based on the mixed non-linear isotropic/kinematic
hardening models of Chaboche. The plastic multiplier appears as the
only unknowns in the resulting problem which will be solved using
the Newton–Raphson iterative scheme. The use of consistent tangent
operator allows the iterations number reduction. The generalized
quadratic yield model with isotropic/kinematic hardening includes
the quadratics criterion of Hill and J2 plasticity as a special case. The
numerical treatment of the suggested model is implemented on
ABAQUS/Standard using user interface material subroutines (UMAT).

This work is organized as follows. In Section 2, the constitutive
equations for modeling Hill and J2 plasticity with nonlinear isotropic/
kinematic hardening are briefly summarized. In Sections 3 and 4, the
continuum tangent modulus and the one single scalar equation are
presented respectively. The consistency of the stress-computation
Algorithm and the Newton iteration method is described in Section
5. A number of numerical simulations are presented in Section 6 and
closing remarks are stated in Section 7.

2. Constitutive equations

The partition of the total strain into an elastic part and a plastic
part is assumed as

ε¼ εe þ εp ð1Þ

where εe denotes the elastic strain tensor and εp is the plastic
strain tensor. The Helmholtz free energy is given by

ψ εe; κ;αk
� �¼ 1

2
εe : D : εeþ

XM
k ¼ 1

ak
2
αk : αkþψ iso κð Þ ð2Þ

where D is the general elastic operator, ak are material parameters,
ψ iso κð Þ is the isotropic hardening function and κ and αk model the
isotropic and kinematic hardening respectively. The states laws are

σ ¼ ∂ψ
∂ε

; Xk ¼
∂ψ
∂αk

; R¼ ∂ψ
∂κ

ð3Þ

where σ and Xk are stress and back-stress tensor respectively and
R is the drag stress in isotropic hardening. Eqs. (2) and (3) give the
following set of equations:

σ ¼D:εe; Xk ¼ ak αk; R¼ ∂ψ iso

∂κ
ð4Þ

The yield function, f, and plastic potential, F, are assumed to be

f ¼
ffiffiffi
3
2

r
φf ξ
� �� σY þRð Þr0; ξ¼ σ�X; X ¼

XM
k ¼ 1

Xk ð5Þ

F ¼
ffiffiffi
3
2

r
φF ξ� �� σY þRð Þþ1

2

XM
k ¼ 1

bk
ak
Xk : Xk

� �
ð6Þ

where bk are material parameters, σY is the initial yield stress, ξ is
the effective stress tensor and φf ξ

� �
, φF ξ

� �
are continuously

differentiable functions called yield function and plastic potential
function respectively. These functions can be isotropic or orthotro-
pic, quadratic or non-quadratic. An associative generalized quadratic
yield function will be considered

φf ξ
� �¼φF ξ

� �¼φ ξ
� �

; φ ξ
� �¼ ffiffiffiffiffiffiffiffiffiffi

ξtPξ
q

ð7Þ
where P is a fourth order tensor which define the yield criterion.
This yield function includes the classical J2 plasticity yield condition
and the quadratic Hill criterion as special cases. The evolution laws
are

_εp ¼ _γ
∂F
∂σ

¼ _γ

ffiffiffi
3
2

r
∂φ
∂σ

; _αk ¼ � _γ
∂F
∂Xk

¼ _γ

ffiffiffi
3
2

r
∂φ
∂σ

�bk
ak
Xk

" #
; _κ ¼ � _γ

∂F
∂R

¼ _γ

ð8Þ
where _γ is the plastic multiplier. Eq. (4b) with (8b) give

_Xk ¼ ak _αk ¼ ak _ε
p�bk _γXk ð9Þ

Finally, the loading/unloading conditions, formulated in stan-
dard Kuhn–Tucker form, are as follows:

f r0 ; _γZ0 ; _γf ¼ 0 ð10Þ
For convenience, the main relations are summarized in Table 1.

Remark 1. In general, the isotropic hardening function ψ iso κð Þ in
Eq. (2) is defined by using power or exponential laws

ψ iso ¼ k
nþ1κ

nþ1

R¼ kκn

(
or

ψ iso ¼ Q κþ e� βκ

β

� �
R¼Q 1�e�βκ

� �
8<
: ð11Þ

where k;n;Q and β are material parameters.

Remark 2. Hill yield criterion, in three-dimensional cases, is
obtained by taking

P ¼ 2
3
H; ½H� ¼

HþG �H �G 0 0 0
HþF �F 0 0 0

FþG 0 0 0
2N 0 0

Sym 2M 0
2L

2
666666664

3
777777775

ð12Þ
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