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a b s t r a c t

In this paper, thermoelastic damping in a nano-beam is studied employing the type III of Green–Naghdi
(GN) theory (with energy dissipation). The nano-beam is considered as a beam-type of NEMS (nano-
electro-mechanical systems). A nonlocal Euler–Bernoulli beam model is established based on the theory
of nonlocal elasticity and the small scale effect is taken into consideration in the former theory. A hybrid
numerical method based on the Galerkin finite element formulation and Newmark finite difference
method is used to solve the derived governing equations. The presented formulations are valid for both
types II and III of GN theory of generalized coupled thermoelasticity in NEMS and MEMS (micro-electro-
mechanical systems). The obtained results for type II of GN theory (without energy dissipation) are
validated by the existing analytical results in the literature to verify the presented method and results. To
show the effects of thermoelastic damping on dynamic behaviors of thermoelastic field in NEMS, the
type III of GN theory is investigated in the paper. The responses of nano-beam resonator in lateral
deflection, temperature and stress fields considering simply supported conditions are obtained and
shown as functions of length and time. Also, the effect of different loading parameters on the transient
thermoelastic behaviors is studied in both types II and III in GN theory. The corresponding dynamic
properties are presented, which are shown to be very different from those predicted by classic elasticity
theory when nonlocal effects are significant.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Micro-electro-mechanical systems attract the attention in the
1980s as sensors and actuators. The fact that they could be manu-
factured using current production techniques and infrastructure of the
semiconductor industry means that they could be produced at low
expense and in large volumes. Their light weight, small size, low-
energy consumption and stability made them even more attractive. In
recent years, the field of MEMS has grown quickly and used into many
applications such as accelerometers, pressure sensors, inkjet printers,
gyroscopes, etc. Nowadays, current technological challenges require
more and more reduced sizes. The next process of miniaturization is
called nano-electro-mechanical systems. For transiting from MEMS to
NEMS needs much reconsideration concerning the sensing techni-
ques. Besides, for compensating the loss of performances when sen-
sors are scaled down to the NEMS level, the resonant sensing has been
widely implemented in nano-sensors. Typical MEMS/NEMS structures
consist of arrays of thin beams in the order of micro/nano-scale.
MEMS/NEMS are very small devices in which electric as well as

mechanical, thermal and fluid phenomena appear and interact.
Because of their micro/nano-scale, strong coupling effects arise
between the different forces, which were disregard at macroscopic
scale, must be taken into account. In order to accurately design such
micro/nano-electro-mechanical systems, it is important to handle the
coupling between the thermal and mechanical fields [1–6].

There are two principal sources of energy loss in MEMS/NEMS,
which can be classified into intrinsic loss and external loss [7]. The
intrinsic loss includes internal friction, thermoelastic effects, etc. The
external loss includes air damping, support loss also called anchor
losses, squeeze film damping, etc. Thermoelastic damping is a sign-
ificant loss mechanism near room temperature in MEMS/NEMS,
working under vacuum condition. Zener [8] derived an expression
for the energy loss in a thin beam. To study the thermoelastic damping
in MEMS and NEMS, some researchers used the classical theory of
coupled thermoelasticity in which the wave propagation speed is
considered to be infinite. Some research works based on the classical
theory of coupled thermoelasticity are reviewed as follows:

Lifshitz and Roukes [9] provided an exact expression for thermo-
elastic damping of small flexural vibrations in micro/nano-thin beams
without any simplifications considered by Zener [8] Prabhakar et al.
[10] studied thermoelastic damping in micromechanical resonators
with two-dimensional heat conduction. Kunzig et al. [11] presented
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the effect of thermoelastic damping on the total Q-factor (quality
factor) in state of the art MEMS gyroscopes with complex beam like
suspensions. Vahdat and Rezazadeh [12] discussed the effects of axial
and residual stresses on thermoelastic damping in capacitive micro-
beam resonators. Rezazadeh et al. [13] studied thermoelastic damping
in micro-beam resonators by using the modified couple stress theory.
Tunvir et al. [14] analyzed the effect of cross-sectional shape on
thermoelastic dissipation energy of micro/nano-elastic beams. Guo
et al. [15] used the finite element method to investigate the effects of
geometric parameters of the vented beam on thermoelastic energy
loss in clamped–clamped and clamped-free beam resonators.

The classical theories of coupled thermoelasticity predict an infinite
speed for the propagation of thermal and elastic waves, which is not
the realistic assumption. To this end, the non-classical theories of
coupled thermoelasticity have been developed to simulate the wave
propagations with finite speed. The non-classical theories admit a
finite speed for the propagation of thermal waves through the
continuum, which are called the second sound theories. Lord and
Shulman [16] developed the theory of generalized thermoelasticity
with one relaxation time for the special case of an isotropic body.
Green and Lindsay [17] developed the theory of thermoelasticity by
taking two relaxation times.

One of the most important coupled thermoelasticity theories was
presented by Green and Naghdi as GN theory in which the propaga-
tion of thermoelastic waves was modeled in a domain with high-rate
excitation [18–20]. The GN theory of coupled thermoelasticity pro-
vides sufficient basic modifications in the constitutive equations that
permit treatment of a much wider class of heat flow problems, called
as types I (classical theory), type II (without energy dissipation) and
type III (with energy dissipation). Thermal wave propagation with
finite speed can be modeled by types II and III. The type II does not
contain dissipation of thermal energy. The constitutive equations in
the GN theory of type III consider energy dissipation [21]. In some
research works, the GN theory was used to study the coupled
thermoelasticity of macro-structures. The thermoelastic wave propa-
gation in FG thick hollow cylinder was studied using the hybrid
numerical method for infinite cylinder [22], finite cylinder [23] and
also using the analytical method [24].

Sun et al. [25] studied the importance of thermoelastic damp-
ing in micro-beam resonators by the Lord and Shulman theory of
generalized thermoelasticity. Sharma and Grover [26] analyzed
thermoelastic vibrations by the Lord and Shulman theory in
micro-/nano-scale beam resonators. Quintanilla [27] proposed a
model of the thermoelasticity based on the GN theory of type II
(without energy dissipation) for microstructure. Guo et al. [28]
derived an explicit formula of thermoelastic damping in micro-/
nano-mechanical resonators based on dual-phase-lagging general-
ized thermoelasticity theory.

The Euler–Bernoulli beam theory is not an accurate theory for
simulating the behaviors of micro-/nano-beam. The nonlocal theory in
continuum mechanics was developed by some researchers such as
Eringen [29] and Edelen [30] to model the small scale effects. To do
this, the stress state is specified at a given point as a function of the
strain states at all points in the structures. The presented nonlocal
theory is based on the forces between atoms and the internal length
scale, which are considered in the constitutive equations as a material
parameter. There are some research works in which the nonlocal
theory of elasticity has been employed for analysis of bending,
buckling and vibration analyses of beam-like elements in micro-
electro-mechanical or nano-electro-mechanical devices (see for exam-
ple [31–33]).

Tang et al. [34] presented two research works as two parts on
the evaluation of length-scale factors in dynamic analysis of MEMS
and NEMS. In part one of their works, the experimental determi-
nation of length-scale factors for micro- and nano-sized silicon
cantilevers, which the length-scale factor improves the accuracy of

the employed models [34]. The micro- and nano-sized length-
scale factors were estimated using experimental data collected
from nano-indentation and micro-indentation experiments [34].
In part two of their works, the tip deflections were estimated
employing the conventional tip deflection model and the modified
deflection model considering the length-scale factor. Then, the
obtained deflections were compared with the experimental data
[35]. A novel automated torsion balance technique was employed
to investigate the size dependence in the torsional response of
micro-sized polycrystalline copper wires using some experiments
by Liu et al. [36]. In another work, the torsion balance technique
was successfully used to investigate the analysis of the plasticity of
micron scale Cu and Au wires under cyclic torsion by Liu et al. [37].

The aim of this paper is the application of GN theory of coupled
thermoelasticity with nonlocal theory to study the thermoelastic
damping in nano-/micro-electro-mechanical systems. The nonlo-
cal theory is employed to simulate the small scale effects on the
obtained results. Both types II and III of the GN theory are
considered in the problem. The thermoelastic governing equations
are derived for a nano-beam resonator subjected to thermal shock
loading. A hybrid numerical method based on the Galerkin finite
element (GFE) method and Newmark finite difference (NFD)
method is employed to solve the governing equations. The
presented method and obtained results are verified with reported
data in the published literature based on the type II of GN theory.
The dynamic responses of nano-beam resonator in lateral deflec-
tion, temperature and stress fields under simply supported con-
ditions are obtained and shown in time domain. The effects of
thermoelastic damping on dynamic behaviors of thermoelastic
fields are studied in details. Also, the effects of different loading
parameters on the thermoelastic damping are studied for various
kinds of nano-beam resonators.

2. Governing equation

Nonlocal elasticity theory is briefly introduced in this section. In
the theory of nonlocal elasticity [29], the stress at a reference point x is
considered to be a function of the strain field at every point in the
body. This observation is in accordance with atomic theory of lattice
dynamics and experimental observation on phonon dispersion. When
the effects of strains at points other than x are neglected, one obtains
classical or local theory of elasticity.

The basic equations for linear, homogeneous, isotropic, non-
local elastic solid with zero body force are given by [29,38]

σkl;kþρðf l� €ulÞ ¼ 0 ð1Þ

σklðxÞ ¼
Z
ν
α x0 �x
�� ��� �

τkldV ð2Þ

τkl ¼ λun;nδklþμðuk;lþul;kÞ ð3Þ
where σkl, τkl, ρ, f l and ul are the non-local stress tensor, classical
stress tensor, mass density, body force and displacement vector at
a point x in the body, respectively. λ and μ are the Lame constants
and V is the volume occupied by the elastic body. The non-local
kernel α x0 �xj jð Þ reflects the impact of the strain at the point x0 on
the stress at the point x. Note that the constitutive equation in the
non-local continuum elasticity is expressed by an integral over the
entire elastic body [31,33].

Beams with rectangular cross-section are mostly employed in
NEMS resonators. A nano-resonator can be modeled as an elastic
prism beamwith either doubly clamped or simply supported ends.
Here, it is considered small flexural deflections of a thin elastic
beam with dimensions of length l, width b and thickness h. The
x axis along the beam and the y and z axes correspond to the
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