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a b s t r a c t

Thermoelastic damping is recognized as a significant loss mechanism at room temperature in micro-scale
beam resonators in vacuum. In addition, if the resonator operates in air, the viscous damping should be
considered. In this study, the forced vibration of beam subjected to a harmonic external force and with the
viscous and thermoelatic dampings simultaneously is investigated. Moreover, the heat conduction in the C–V
model is considered. The analytical solutions of the system with different boundary conditions are presented.
Moreover, the mathematical model of the quality factor (Q-factor) of the system is derived. Finally, the effects
of the thermal diffusion, the phase lag for heat flux, the squeezing film damping, the size scale and the
boundary conditions on the response ratio and the Q-factor of the system are investigated. It is found that the
effects of the thermal diffusion, the squeezing film damping, the size scale and the boundary conditions on the
response ratio and the Q-factor are significant.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Micro- and nano-scale resonators have many important technolo-
gical applications. [1–3]. Accurate analysis of various effects on the
characteristics of resonators, such as resonant frequencies and quality
factors, is crucial for designing high-performance components.

Several different dissipation mechanisms in MEMS have been
discussed. These factors includes (1) doping impurities losses, (2)
support-related losses, (3) thermoelastic damping, and (4) the
radiation of energy away from the resonator into its surroundings
[3–10]. It is very difficult to investigate directly the coupled system
with several dissipation mechanisms simultaneously. In most
literature, in neglect of the coupled effect each independent quality
factor for some dissipation fQTED;Qf luid;Qanchor ;Qsurf ace;Qothersg is
firstly determined and the quality factor of the coupled system is
approximated as [8,10]

1
Q
¼ 1
QTED

þ 1
Qf luid

þ 1
Qanchor

þ 1
Qsurf ace

þ 1
Qothers

In fact, the coupled effect of these dissipations on the perfor-
mance of the system should be significant. Obviously, the solution
of the above equation is rough.

So far, it is found that thermoelastic damping is a significant loss
mechanism in MEMS resonators. Several literatures investigated the

effect of thermoelastic damping. Zener [5] experimentally verified the
thermoelastic damping process. Boley [11] analyzed the thermally
induced vibrations of a simply supported rectangular beam. Manolis
and Beskos [12] studied the effect of damping on the vibration of
beams subjected to fast surface heating. However, the coupling
between stress and temperature fields was not considered. Roszhardt
[13] observed thermoelastic damping in silicon micro-resonators at
room temperature. Givoli and Rand [14] studied the effect of thermo-
elastic damping on dynamic response properties of a rod. They found
that when the thermal frequency approaches to the critical frequency
of rod, the dynamic response is changed significantly. Harrington et al.
[15] measured mechanical dissipation in micron-sized single-crystal
resonators in torsion and flexural modes. They found that the
resonance frequency changes with temperature. Lifshitz and Roukes
[16] and Guo and Rogerson [17] investigated thermoelastic damping of
a beam with rectangular cross-sections based on the classical Fourier
thermal conducting equation. Houston et al. [18] studied the impor-
tance of thermoelastic damping for silicon-based MEMS. Their results
indicate that the internal friction arising from this mechanism is
significant. Sun et al. [19] investigated thermoelastic damping in
micro-beam resonators. The thermoelastic damping of micro-beam
resonators is analyzed by using both the finite sine Fourier transfor-
mation method combined with Laplace transformation and the
normal mode analysis. When the thickness of the micro-beam is
larger than its characteristic size, the effect of thermoelastic damping
weakens as the beam thickness increases. The size-effect induced by
thermoelastic coupling would disappear when the thickness of the
micro-beam is over a critical value that depends on the material

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ijmecsci

International Journal of Mechanical Sciences

http://dx.doi.org/10.1016/j.ijmecsci.2014.05.026
0020-7403/& 2014 Elsevier Ltd. All rights reserved.

n Tel.: þ886(6)2050625; fax: þ886(6)2059422.
E-mail address: smlin45@gmail.com

International Journal of Mechanical Sciences 87 (2014) 26–35

www.sciencedirect.com/science/journal/00207403
www.elsevier.com/locate/ijmecsci
http://dx.doi.org/10.1016/j.ijmecsci.2014.05.026
http://dx.doi.org/10.1016/j.ijmecsci.2014.05.026
http://dx.doi.org/10.1016/j.ijmecsci.2014.05.026
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2014.05.026&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2014.05.026&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2014.05.026&domain=pdf
mailto:smlin45@gmail.com
http://dx.doi.org/10.1016/j.ijmecsci.2014.05.026


properties and the boundary conditions. Sun et al. [20] investigated
the laser-induced vibrations of micro-beams under different boundary
conditions without the effect of fluid damping. An analytical–numer-
ical technique based on the Laplace transform is used to calculate the
vibration of the deflection and thermal moment. The damping ratio
and resonant frequency shift ratio of beams due to the air damping
effect and the thermoelastic damping effect are compared. Choi et al.
[9] presented some efficient prediction of the quality factors of
micromechanical resonators. A finite element formulation based on
the weak form of fully coupled thermoelastic problems was suggested.
Further, the authors applied the model order reduction (MOR) scheme
to the coupled multiphysical problem in order to achieve computa-
tional efficiency. Vahdat and Rezazadeh [2] investigated the effects of
axial and residual stresses on thermoelastic damping in micro-beam
resonators. A Galerkin based finite element formulation has been used
to analyze TED for the first mode of vibration of the micro-beam
resonator with both ends clamped and isothermal. It was found that
compressive (tensile) residual stresses increase (decrease) the TED
ratio considerably.

Obviously, if a resonator is in absolute vacuum, the fluid
damping is zero. However, when a resonator operates in air, the
fluid damping is significant. Further, if a beam resonator operating
in air is close to the boundary, the squeezing film damping should
be considered. The squeezing pressure force between the resona-
tor‘s beam and the boundary surface is inversely proportional to d3s
where ds is the distance between the beam and the boundary
surface [21,22]. Zhang et al. [7] studied the effect of air damping on
the frequency response and the quality factor of a micro-machined
beam resonator. Their results indicate that air damping generally
shifts the resonance frequency on the order of no more than 10�6

and degrades the quality factor, and that this effect of air damping
increases as the dimension of the beam decreases. However, the
effect of squeezing film damping was not considered. In addition
to beam resonator, a few literatures are dedicated to the study of
thermoelastic damping in micro-plate and tube resonators
[3,23,24].

From the above summary, most literatures investigating ther-
moelastic damping were based on the Fourier conduction model.
Moreover, the effect of squeezing film was not taken into con-
sideration. In this paper, the forced vibration model of beam
resonator with both effects of the squeezing film and thermo-
elastic dampings is established based on the C–V model. The
analytical solution of the system is derived. Moreover, the effects
of several parameters on the response ratio, thermal moment and
Q-factor are investigated.

2. Governing equation and boundary conditions

Consider the thermoelastic vibration of a Bernoulli–Euler
cantilever subjected to the harmonic exciting force. The heat
conduction is in the C–V model. The isothermal—isolated bound-
ary conditions are firstly investigated. The different boundary
conditions are listed in Appendix A–C. The coupled dimensionless
governing equations are

∂4w

∂ξ4
þA1

∂2w
∂τ2

þc
∂w
∂τ

þ∂2θT

∂ξ2
¼ f ðξÞ sin ωτ ð1Þ

∂2θT

∂ξ2
�A2θT �A3

∂θT

∂τ
þA4

∂3w

∂ξ2∂τ
�A5

∂2θT

∂τ2
þA6

∂4w

∂ξ2∂τ2
¼ 0 ð2Þ

If the forcing term and the viscous effect of Eq. (1) are ignored,
the governing equations become those given by Sun et al. [19].
Moreover, the beam is assumed very thin. Therefore, the tempera-
ture increment varies in terms of a sin(pz) function along the
thickness direction, where p¼π/h. based on the condition the

second term of Eq. (2) is derived [19]. It is different to that given by
Lifshitz and Roukes [16] where the upper and lower surfaces of
beam cross-section at z¼ 7h=2, are assumed adiabatic. In addi-
tion, the fifth and sixth terms of Eq. (2) are the effects of the phase
lag for heat flux which are not considered in the Lifshitz and
Roukes model.

The isothermal—isolated boundary conditions of a cantilever
are:

At ξ¼0

wð0; τÞ ¼ 0; ð3Þ

∂wð0; τÞ
∂ξ

¼ 0 ð4Þ

θT ð0; τÞ ¼ 0 ð5Þ
At ξ¼1:

∂2wð1; τÞ
∂ξ2

¼ 0; ð6Þ

∂3wð1; τÞ
∂ξ3

¼ 0; ð7Þ

θ0
T ð1; τÞ ¼ 0: ð8Þ
Obviously, if the phase lag for heat flux τq ¼ 0, the C–V model of

heat conduction becomes the Fourier model. If the resonator is
operating in fluid and close to the bounadry surface, the effect of
the squeezing film damping should be significant. In the conven-
tional, the squeezing film damping coefficient c¼ csb

3=h3
g where

cs ¼ μL2=
ffiffiffiffiffiffiffiffiffiffi
EIρA

p
, [21].

3. Analytical solution

3.1. Solution method

The solutions of system composed of Eqs. (1)–(8) are assumed
to be

wðξ; τÞ ¼wcðξÞ cos ωτþwsðξÞ sin ωτ¼w sin ðωτ�φÞ;
θT ðξ; τÞ ¼ θcðξÞ cos ωτþθsðξÞ sin ωτ¼ θ sin ðωτ� ~φÞ; ð9Þ
where

w¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

c þw2
s

q
; φ¼ tan �1 �wc

ws

� �
;

θ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ2
c þθ2

s

q
; ~φ ¼ tan �1 �θc

θs

� �
:

Substituting Eq. (9) into the Eqs. (1)–(8), one obtains

d4wc

dξ4
�ω2A1wcþcωwsþd2θc

dξ2
¼ 0; ð10Þ

d4ws

dξ4
�ω2A1ws�cωwcþd2θs

dξ2
¼ f ðξÞ; ð11Þ

d2θc

dξ2
þðA5ω2�A2Þθc�A3ωθsþA4ω

d2ws

dξ2
�A6ω2d

2wc

dξ2
¼ 0; ð12Þ

d2θs

dξ2
þðA5ω2�A2ÞθsþA3ωθc�A4ω

d2wc

dξ2
�A6ω2d

2ws

dξ2
¼ 0: ð13Þ

The corresponding boundary conditions are
At ξ¼0:

wcð0Þ ¼ 0; ð14Þ
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