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a b s t r a c t

In this paper, the steady-state response for a thermoelastic half-plane with voids is studied, in which, the
surface of the half-plane is partly subjected to a surface harmonic force and a thermal source. The semi-
analytical solutions and the numerical solutions of the half-plane problems with three different
materials are obtained from a semi-analytical method and a developed differential quadrature element
method in this paper, respectively. The corresponding numerical results are compared and the effects of
parameters are considered as well. It can be seen that the semi-analytical solutions and corresponding
numerical solutions coincide with each other. This means that the differential quadrature element
method is a very efficient method for seeking the numerical solutions of the half-plane problems with
discontinuity, and it has some advantageous properties, such as small computational amount, high
accuracy, and better convergence.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

There exist abundant porous materials in nature, such as wood,
sandy soil, sponge and coral. Also a lot of engineering materials are
all porous materials in the natural state, such as concrete, wood,
stone, and ceramic. Porous materials have extensive applications
in aerospace, electronic communications, construction, metallurgy,
nuclear energy, petrochemical industry, machine, medicine and
environmental protection due to their advantageous properties,
such as low relative density, light weight, high specific strength
and surface area, thermal and acoustical insulation as well as good
permeability. Hence, the application field of porous materials has
already outdistanced homogenous materials.

Since the 1980s, many researchers have been interested in
studying the theories and applications for thermoelastic materials
with voids. A series of relative perfect theories for thermoelastic
materials with voids has been presented by Goodman and Cowin
[1], Nunziato and Cowin [2], Cowin and Nunziato [3], Iesan [4], and
also many recent applied results have been achieved. Scarpetta [5]
presented the minimum principle for the bending problem of
elastic plates with voids. Bîrsan [6] gave a bending theory of
porous thermoelastic plates, and then, Bîrsan [7,8] presented a

nonlinear theory for porous elastic and thermoelastic shells and
discussed the corresponding linearized theory. Sharma et al. [9]
analyzed the three-dimensional vibration of a thermoelastic
cylindrical panel with voids. Sharma and Kaur [10] investigated
the propagation of thermoelastic waves along the circumferential
direction in homogeneous, isotropic, cylindrical curved solid plates
with voids. Ghiba [11] presented the bending theory of Mindlin
type thermoelastic plates with voids and studied the temporal
behavior of the corresponding initial–boundary value problem.
Ciarletta et al. [12] studied plane waves and vibrations of materials
with voids from the theory of micropolar thermoelasticity. Chiriţă
and Ciarletta [13] studied the structural stability for a mathema-
tical model of the linear thermoelastic materials with voids. Li and
Cheng [14] presented a Hamilton variational principle of aniso-
tropic thermoelastic materials with voids and gave a relevant
nonlinear model under the finite deformation. Due to that the
elastic half-space and half-plane problems have extensive applica-
tions in practice of the dynamic response analyses of the founda-
tion and so on, the relevant research has been studied for a long
time. Recently, Kumar and Rani [15–17] applied the transform
methods to study a series of problems for the thermoelastic half-
space with voids subjected to a surface force or a thermal load.

In this paper, the steady-state dynamic response for a thermo-
elastic half-plane with voids subjected to a surface harmonic force
and a thermal source is studied. A semi-analytical method (SAM)
and a new numerical method, namely, the developed differential
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quadrature element method (DQEM), are applied to obtain the
semi-analytical solution and numerical solution for the problem,
respectively. One can see that the SAM has a unique function for
solving the problems for the thermoelastic half-plane with voids
due to that the analytical solution can be obtained in the transform
field. At the same time, the comparison between the numerical
solution and the corresponding semi-analytical solution points out
that they are agreed well with each other. This means that the
DQEM is a very efficient numerical method for seeking the
numerical solutions of thermoelastic half-plane problems with
discontinuity, and it has some advantages, such as small computa-
tional amount, high accuracy, and better convergence.

2. Basic equations and the formulation of the problem

If the body forces, thermal sources and external equilibrated
body forces can be ignored, following the linear theory of thermo-
elastic materials with voids [4], we have the basic equations for a
linear isotropic thermoelastic body with voids as follows:

μui;kkþðλþμÞuk;kiþbvϕ;i�βθ;i ¼ ρ €u

αvϕ;ii�bvuk;k�ξvϕþmvθ¼ ρχ €ϕ

Kθ;ii�βT0 _uk;k�mvT0
_ϕ¼ ρce _θ

8>><
>>: ð1Þ

where the first equation in Eq. (1) is the differential equation of
motion, the second one is the evolution equation of voids, and the
third one is the energy equation. At the same time, the constitutive
equation is given as

σij ¼ λuk;kδijþμðui;jþuj;iÞþðbvϕ�βθÞδij ð2Þ
In these equations, ui; εij; σij are the displacement vector, strain
tensor and stress tensor, respectively, and ϕ; θ are the changes in the

volume fraction of voids and the temperature fields, respectively
(hereafter, they are called as the volume fraction of voids and the
temperature for short). The meaning of parameters, which are
depending on the properties of materials, can be found in [4]. For
example, λ; μ are the Lamé coefficients, ρ is the density in the
reference configuration, χ is the equilibrated inertia, αv; bv; ξv are
the void parameters which describe the characteristics of porosity
variation. Exactly, αv is a diffusion coefficient of porosity variation
which determines the velocity of expansion wave in incompressible
granular materials, bv is a stress parameter of porosity variation, ξv is
a non-conservative characteristic coefficient of porosity variation.
β¼ ð3λþ2μÞα, in which, α is the linear expansion coefficient.
In addition, K is the thermal conductivity, ce is the specific heat at
the constant strain, mv is a void–heat coupling coefficient, T0 is the
absolute temperature at the natural state and δij is the Kronecker
symbol.

From Eq. (1), it can be seen that if letting αv; bν; ξv; mν be zero,
the system is reduced to one of the thermoelastic problems,
and if letting mν; β; K be zero, the system is reduced to one of
the elastic problems with voids, further, if letting αv; bν; ξv;
mν; β; K be zero, the system is reduced to one of the elastic
problems.

For a 2-D generalized plane problem, it can be regarded as a
plane stain problem. Thus, the displacement along the y-direction
can be approximately regarded as zero, and all unknown quantities
are independent of the coordinate y, namely, u¼ uðx; z; tÞ, v¼ 0,
w¼wðx; z; tÞ, θ¼ θðx; z; tÞ, ϕ¼ϕðx; z; tÞ. At this time, the material
parameters λ; μ; bv; β in Eq. (1) should be converted into λ0 ¼
ð2λμ=2μ�λÞ; μ0 ¼ μ; b0v ¼ ð2μ=λþ2μÞbv; β0 ¼ ð2μ=λþ2μÞβ (here-
after, λ;μ; bv;β are still used to represent λ0;μ0; b0v;β

0 for
convenience).

For definiteness, assume that the surface of the half-plane is
subjected to a harmonic load pðx; tÞ or a harmonic thermal source

Nomenclature

SAM semi-analytical method
DQEM differential quadrature element method
TEVHP thermoelastic material with voids
TEHP thermoelastic material without voids
EVHP elastic material with voids
SAS semi-analytical solution
DQM differential quadrature method
ui displacement vector
εij strain tensor
σij stress tensor
ϕ change in the volume fraction of voids
θ change in the temperature fields
λ;μ Lamé coefficients
ρ density
χ equilibrated inertia
αv diffusion coefficient of porosity variation
bv stress parameter of porosity variation
ξv non-conservative characteristic coefficient of porosity

variation
α linear expansion coefficient
K thermal conductivity
ce specific heat at the constant strain
mv void–heat coupling coefficient
T0 absolute temperature at the natural state
δij Kronecker symbol
ℏ heat transfer coefficient

p x; tð Þ surface harmonic force
Q x; tð Þ surface thermal source
Ω circular frequency of excitation
X; Z dimensionless forms of coordinates x; z
τ dimensionless form of time t
U; W dimensionless forms of displacements u; w
ψ dimensionless form of ϕ
Θ dimensionless form of θ
σZZ ; τZX ; σXX dimensionless forms of stresses
P dimensionless form of surface harmonic force
Q dimensionless form of surface thermal source
ω dimensionless form of excitation frequency Ω
ℏ dimensionless form of heat transfer coefficient ℏ
a1; a2; a3; a4; a5; a6; a7; a8; V1; V3 dimensionless

parameters
a0 width of local area of the subjected surface force and/

or thermal source
n1; n2 number of grid points collocated in the elements

1 and 2 along the X-direction, respectively
n3 number of grid points collocated along the Z-

directions
UðlÞ

ij ; W ðlÞ
ij ; ψ ðlÞ

ij ; ΘðlÞ
ij values of the corresponding functions at

the grid point ði; jÞ in the element l
Aðm;lÞ
ik weighting coefficient of the mth order partial deriva-

tive with respect to X
Bðn;lÞ
jk weighting coefficient of the nth order partial deriva-

tive with respect to Z
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